

SEQSEE: A CONCEPT-CENTERED

ARCHITECTURE FOR SEQUENCE PERCEPTION

Abhijit A . Mahabal

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy
in Computer Science

in the School of Informatics and Computing,
and

the Cognitive Science Program
Indiana University

Bloomington

December 2009

ii

iii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

Dr. Douglas R. Hofstadter

(Principal Adviser)

Dr. M ichael Gasser

Dr. Robert Goldstone

Dr. David Leake

Bloomington, Indiana
December 16, 2009.

iv

v

© 2010

Abhijit Mahabal

ALL RIGHTS RESERVED

vi

vii

To Ti. Aai and Ti. Dada

viii

ix

ACKNOWLEDGMENTS

For a very long time now, I have been fascinated by how people think.

Many people have had a lasting influence on how I think about thinking.

The origin of my interest in how the mind works is partly selfish: when I

was sixteen, I desperately and very urgently needed to understand how I solve

math problems. In the summer of 1994, I was one of the six students selected to

represent India at the International Math Olympiad in Hong Kong. The criteria

for selection was a series of tests totaling twenty problems ñ five problems

each fro m algebra, combinatorics, number theory, and geometry. I solved twelve

of the fifteen problems from algebra, combinatorics, and number theory. And

none ñ nada, zero, zilch ñ from geometry. I had only about a month between

my selection and the actual Olympi ad in Hong Kong in which to raise my game.

My failure at geometry was not caused by lack of motivation or from

being incompetent at math ñ I was only incompetent at geometry. I spent

hundreds of hours trying to get better at geometry and in watching myself solve

problems. (This story has a happy ending. Although I repeated in 1995 my

unheroic feat of getting selected for the team despite a perfect zero in

geometry, I did solve all three geometry problems that I faced at the Olympiad

itself.)

In 1996, I rea d and was inspired by Fluid Concepts and Creative

Analogies . The computer models described in the book were based on deep and

introspective observation of acts of solving problems, of extrapolating

sequences, of perceiving analogies, of designing fonts, an d so forth. Working

with Doug Hofstadter has been very enriching, since, it turned out, the models

were also based on observation of acts of transalation, of writing metrical verse,

of error -making and slips of tongue, of creating ambigrams, of humor, of

mathematical discovery, and much besides. I am grateful to have been around

such a vibrant mind.

x

 I fervently hope that one component of Dougõs attitude has rubbed off

on me ñ his dogged perseverance in getting to the crux of a matter, in not

letting go unt il he believes that he truly understands an issue.

I also hope that I have learned a thing or two from Doug about clarity in

writing. I am thankful for his many detailed comments on my drafts. (The very

first comment, on page 1, was òkern thisó.)

I thank R obert Goldstone, Mike Gasser, and David Leake for supporting

me throughout graduate school. Mike Gasserõs Grounding Lab meetings and Rob

Goldstoneõs Percepts and Concepts Lab meetings were invaluable, as was Robõs

generosity in letting me use his lab to ru n experiments. David Leake was always

supportive and full of encouragement, and I have learned much from him.

I could not have been where I am today without Aai and Dada. Their love,

their honesty and integrity, their love for reading, their open -mindednes s in not

caring if I conformed to the prevalent narrow view of education, their love for

the Marathi tongue, and the steady diet of interesting puzzles that they brought

me up on have shaped who I am.

Ashish ñ eight years elder to me ñ has been a role mode l since I was in

kindergarten. I followed in his footsteps from early on ñ to atheism; to

questioning religious beliefs and wondering about their origin; to numismatics;

to astronomy, physics, and math; to birding; and even to Perl.

I could not have finish ed writing without Shwetaõs help, patience, and her

nagging me to completion. She also endured my many soliloquies about what I

was doing in Seqsee and how great Perl is. We started graduate school together,

and finished together. We were always at nearly the same stages of our graduate

careers, and that was a big help. For both of us, Suhana is an amazing stress

buster. It is impossible to simultaneously watch her smile and be stressed out.

Helga deserves a special thank you. Without her vigilance, CRCC wo uld

truly stop functioning. For the previous three semesters, I have been away in

California, and things would have been much more difficult without her

enthusiastic help.

xi

Of my fellow graduate students, two deserve special mention for many

intense conver sations that I cherish: David Landy and Christopher Honey. Other

FARGonauts and Exo -FARGonauts, past and present, helped with many ideas:

Harry Foundalis, Francisco Lara -Dammer, Eric Nichols, Damian Sullivan, Matt

Rowe, Will York, Michael Roberts, David Mo ser, Alexandre Linhares, Donald Byrd

and Hamid Ekbia. I must single out three ex -FARGonauts for significantly

contributing to the present work through their own dissertations: Marsha

Meredith ñ who worked on Seek -Whence for her Ph.D. ñ and Melanie Mitchell

and James Marshall ñ who wrote, respectively, the Copycat and Metacat

programs.

Seqsee is written in Perl, and I have had the good fortune of closely

following the development of the next version of the language ñ Perl 6. This

has helped me see the intens e amounts of dedication and care that has been put

into Perl. I thank Larry Wall, Damian Conway, Audrey Tang, chromatic, Patrick

Michaud, and Jonathan Worthington (and countless others) for giving so freely

of themselves.

Many authors have shaped my though ts. A few of these include Douglas

Hofstadter, George Pólya, Dan Dennett, Donald Norman, Gilles Fauconnier, John

Ellis, Thomas Kuhn, Michael Agar, Erv in Goffman, Larry Wall, Eviatar Zerubavel,

William James, Bernard Baars, George Lakoff, and Roger Schank .

I have been influenced by many other people, a few of whom include, in a

rough chronological order: Vivek Wagh, Prof. Shukla, Subhash Khot, M. Prakash,

S. N. Maheshwari, Amitabha Tripathi, Ashish Raniwala, Rohit Karlupia, Amit

Garg, Arjun Prasad Singh, Ha rshal Pradhan, Siddharth Prakash Jain, people at

Landmark Education, Chirag Jain, and Roshan James.

Thank you all very much!

xii

xiii

Seqsee: A Concept -centered Architecture for Sequence Perception

Abhijit A. Mahabal

 One of the goals of this project is to des ign and implement a computer program

that can extend integer sequences intelligently, and the project has resulted in the

creation of the program named òSeqseeó (pronounced òsexyó). Seqsee can extend a wide

range of cognitively interesting sequences, inclu ding the following sequence (Seqsee is

presented the sequence without the groupings indicated by the parentheses):

((1)) ((1) (1 2)) ((1) (1 2) (1 2 3))

If people are shown this sequence (without the parentheses), they quickly form a

group consisti ng of the three initial ò1ós, but then realize that each plays a slightly

different role in the sequence. Like people, Seqsee is initially distracted by the three

consecutive ò1ós, but gradually figures out that the second ò1ó is an ascending group,

and th at the initial ò1ó is an ascending group made up of one ascending group.

Architecturally, Seqsee is a descendant of Hofstadter & Mitchellõs computer

program Copycat, and adds several novel features that allow it to easily modify behavior

in response to its recent perceptions, to form specific expectations such as òan

ascending group is likely to be located hereó, to more quickly understand sequences

having previously seen similar sequences, to see an entity as something else, and to do

all this without the use of brute force.

Seqsee uses several ideas in achieving its goals: William Jamesõ notions of the

fringe and the stream of thought; analogies between objects; categorization and labeling

of objects and of situations, and the detection of categories witho ut using brute -force

tests for all sorts of categories; the notion of context which influences and is influenced

by perception; the notion, similar to affordances, of the òaction fringeó of an object; and

a category -based long -term memory.

The dissertation describes the program and its principles, which are much more

general than integer -sequence extrapolation, and compares its performance with human

performance.

______________________________ _________

______________________________ _________

_______________ _______________ _________

______________________________ _________

xiv

xv

BRIEF TABLE OF CONTENTS

Chapter 1 Introduction .. 1

Chapter 2 The Seek-Whence Domain ... 25

Chapter 3 Seqseeõs Performance... 45

Chapter 4 Codelets, Codelet Trees, and Pressure ... 85

Chapter 5 Context and Pressure ... 101

Chapter 6 Categories in Seqsee ... 133

Chapter 7 Long -term Memory ... 165

Chapter 8 Conclusions and Next Steps ... 173

Appendix A Reading .. 195

Appendix B Restrictions on Groups in Seqsee ... 197

Appendix C Simon and Kotovskyõs Work ... 201

Appendix D Human Performance .. 205

xvi

xvii

DETAILED TABLE OF CONTENTS

Acknowledgments .. ix

Brief Table of Contents .. xv

Detailed Table of Contents .. xvii

List of Figures ... xxiii

List of Tables ... xxvii

Chapter 1 Introduction ... 1

Section 1.1 The Goals .. 1

Section 1.2 Brute -force vs. Concept -centered Strategies 3

1.2.1 Superseeker ... 4

1.2.2 Deep Blue ... 8

1.2.3 Copycat ... 11

Section 1.3 The Subgoals ... 14

1.3.1 Extensibility .. 15

1.3.2 Generalization ... 18

1.3.3 Scalability .. 20

1.3.4 Context -sensitivity .. 21

1.3.5 Visualization to Gain Insight .. 22

1.3.6 Subgoals in Tension ... 22

Section 1.4 The Structure of This Document .. 23

Chapter 2 The Seek -Whence Domain .. 25

Section 2.1 What Constitutes a Problem in This Domain? 25

Section 2.2 A Sampler of Sequences ... 27

2.2.1 Periodic and Quasi -periodic Sequences ... 27

2.2.2 Ascending Groups .. 30

xviii

2.2.3 Descending Groups and Sameness Groups 31

2.2.4 Combining ñ or Crossing ñ Sequences .. 31

Section 2.3 Pattern ðbased Sequences .. 33

Section 2.4 Multiple Ways of Seeing .. 35

Section 2.5 Squinting .. 36

Section 2.6 Garden -path Sequences ... 39

Section 2.7 Blemished Seq uences... 40

Section 2.8 Seqseeõs Deep Connection with Copycat 41

Section 2.9 The Fuzzy Boundary of the Domain .. 42

Chapter 3 Seqseeõs Performance .. 45

Section 3.2 One Complete Run ... 49

Section 3.3 Garden -path Sequences ... 60

3.3.2 A Few More Garden -path Sequences ... 61

Section 3.4 Quasi -periodic Sequences ... 66

3.4.2 Comparison with Human Performance .. 67

3.4.3 The Effect of Template Size .. 68

3.4.4 The Effect of Revealing More Terms Initially 69

Section 3.5 Squinting, or Seeing As ... 70

Section 3.6 Remindings .. 73

Section 3.7 Extending Seqsee: Primes ... 76

Section 3.8 Further Comparison with Human Performance 77

3.8.1 Different Types of Relationships Between Ascending Groups 79

Section 3.9 Sequences Not Solved by Seqsee .. 79

3.9.1 Sequences Outside the Domain ... 80

3.9.2 Sequences Based on Unimplemented Concepts 81

3.9.3 Failure Caused by a Deficient Im plementation 82

xix

3.9.4 Sequences Rarely Solved ... 83

Section 3.10 Parting Thoughts ... 83

Chapter 4 Codelets, Codelet Trees, and Pressure .. 85

Section 4.1 The Codelet -level Description ... 86

Section 4.2 The Coderack .. 87

Section 4.3 The òCodelet-treeó-level Description ... 88

Section 4.4 The òPressureó-level Description .. 90

4.4.1 òProgrammingó Seqsee .. 92

4.4.2 Coderack Demographics ... 92

4.4.3 Pressure ... 94

Section 4.5 The Genesis of Pressure ... 95

4.5.1 Analogy as a Source of Pressure ... 95

4.5.2 Top -down Expectation as a Source of Pressure 97

4.5.3 Reminding as a Source of Pressure .. 98

4.5.4 òReflexó Pressure .. 98

Section 4.6 Parting Thoughts ... 98

Chapter 5 Context and Pressure ... 101

Section 5.1 Serendipity .. 103

Section 5.2 Copycatõs Context-sensitivity .. 104

5.2.1 Context Influences what is Perce ived ... 104

5.2.2 Context Influences Responses to the Perception 107

5.2.3 Perceptions and Actions Modify Context .. 108

5.2.4 Other Contexts in Copycat and Metacat .. 108

Section 5.3 Specificity of Pressures .. 110

Section 5.4 Perceptual Context .. 116

Section 5.5 Focusing on an Object .. 120

xx

5.5.1 One Component of Focusing on an Objec t 120

5.5.2 The Other Component of Focusing on an Object 121

Section 5.6 Labels and Context ... 122

Section 5.7 How the Fringe Generates Specific Pressures 126

5.7.1 The First Stop ... 127

5.7.2 The Second Stop .. 127

5.7.3 The Third Stop ... 128

5.7.4 Specificity of Generated Pressures .. 129

5.7.5 The Fourth Stop ... 130

Section 5.8 Parting Thoughts .. 130

Chapter 6 Categories in Seqsee .. 133

Section 6.1 Categories Missing from Seqsee ... 135

Section 6.2 A Single Category in Depth .. 137

6.2.1 Potential Instances .. 137

6.2.2 Analogies Based on This Category .. 138

6.2.3 Discovery ... 143

6.2.4 Gradedness of Category Membership .. 151

Section 6.3 The Category òPrime Numberó .. 152

Section 6.4 A Family of Generated Categories .. 153

Section 6.5 A Category with a Faint Odor .. 157

Section 6.6 Derivative Sequences ... 159

Section 6.7 The Category òThings Like Xó .. 160

Chapter 7 Long -term Memory ... 165

Section 7.1 A Different Method for Spreading Activation 165

Section 7.2 A Feature Missing from Seqsee: Forgetting 169

Section 7.3 How New Links are Created ... 169

xxi

Chapter 8 Conclusions and Next Steps ... 173

Section 8.1 A Few Deficiencies in Seqs ee ... 173

8.1.1 Features in Seqsee Sometimes Interfere With Each Other 174

8.1.2 Granularity of Codelets ... 174

Section 8.2 A Hard Look at Granularity ... 175

8.2.1 Benefits of a Finer Granularity ... 176

8.2.2 Roger Schank on Finer Granularity ... 177

8.2.3 Challenges of Implementing at a Finer Granularity 179

8.2.4 A Codelet for Multi plication? ... 181

Section 8.3 Micro -Seqsee ... 182

8.3.1 Relevant Knowledge ... 183

8.3.2 Mental Spaces .. 183

Section 8.4 Mental Spaces in Extrapolating Sequences 188

Section 8.5 Contributions of This Rese arch .. 193

Appendix A Reading ... 195

Appendix B Restrictions on Groups in Seqsee ... 197

Appendix C Simon and Kotovskyõs Work .. 201

Appendix D Human Performance .. 205

Bibliography ... 211

xxii

xxiii

LIST OF FIGURES

Figure 1.1 Intermediate and final stages in understanding òiijjkkó 12

Figure 1.2 Activ ation of three concepts in Copycat .. 12

Figure 3.1 A few simple sequences that Seqsee solves .. 45

Figure 3.2 The sequences from Figu re 3.1, now shown with ovals 46

Figure 3.3 A percentile graph .. 46

Figure 3.4 Seqseeõs performance on sequences from Figure 3.1 47

Figure 3.5 Sequence c with distractors .. 49

Figure 3.6 Initial stage: after 0 codelets .. 50

Figure 3.7 Early stage: some groups seen ... 51

Figure 3.8 A first question ñ although hasty! ñ is asked .. 52

Figure 3.9 Group of groups formed ... 54

Figure 3.10 The correct continuation is suggested! .. 56

Figure 3.11 And the solution is expl ained. ... 57

Figure 3.12 Starting out on the wrong foot .. 59

Figure 3.13 Two structurally similar but cognitively dissimilar sequence s 60

Figure 3.14 Comparison of Seqsee (blue) with human (red) performance 61

Figure 3.15 A few more garden -path sequences .. 62

Figure 3.16 Sequences from Figure 3.15, with ovals ... 63

Figure 3.17 Seqseeõs performance on sequences from Figure 3.15 63

Figure 3.18 Structure of Sequence b ... 64

Figure 3.19 Part one of Seqsee floundering on Sequence a .. 64

Figure 3.20 Part two of Seqsee floundering on Sequence a .. 64

Figure 3.21 Two quasi -periodic sequences that Seqsee solves ... 66

Figure 3.22 Sequences from Figure 3.21, with ovals ... 66

Figure 3.23 Performance on sequences from Figure 3.21 ... 67

Figure 3.24 Three more quasi -periodic sequences .. 67

Figure 3.25 Sequences from Figure 3.24, now with ovals .. 67

xxiv

Figure 3.26 Perfo rmance on sequences from Figure 3.24 .. 68

Figure 3.27 A portion of Figure 3.26, magnified .. 68

Figure 3.28 The effect of template si ze .. 69

Figure 3.29 The effect of revealing more terms initially .. 70

Figure 3.30 Three sequences helped or hindered by squinting .. 70

Figure 3.31 Screenshot: Seqsee squinting .. 71

Figure 3.32 Understanding Sequence a without squinting .. 71

Figure 3.33 Sequences from Figure 3.30, with ovals ... 72

Figure 3.34 Performance on sequences from Figure 3.30 .. 72

Figure 3.35 Effect of having seen the same sequence before .. 74

Figure 3.36 The effect of having previously seen similar sequences 74

Figure 3.37 Sequences from Figure 3.36, with ovals ... 75

Figure 3.38 Effect of having seen similar sequences ... 75

Figure 3.39 Sequences based on the prime numbers .. 76

Figure 3.40 Sequences from Figure 3.39, with ovals ... 77

Figure 3.41 Performance on sequences from Figure 3.39 .. 77

Figure 3.42 Sequences to show two types of relations between ascending groups 79

Figur e 3.43 Performance on sequences in Figure 3.42 ... 79

Figure 4.1 A single tree of codelets ... 89

Figure 4.2 Probability of choosing òAttempt Extension of Groupó 93

Figure 5.1 A section of Copycatõs Slipnet while solving problem 1106

Figure 5.2 The same section o f Copycatõs Slipnet while solving problem 2106

Figure 5.3 What move should black play? ...112

Figure 6.1 Analogy between ò5 6 7ó and ò5 6 7 8ó ..138

Figure 6.2 Skeleton of the analogy between ò5 6 7ó and ò5 6 7 8ó139

Figure 6.3 Analogy between ò4 5 6ó and ò7 8 9ó ..140

Figure 6.4 Skeleton of the analogy between ò4 5 6ó and ò7 8 9ó140

Figure 6.5 Analogy between ò(4 5 6) 17ó and ò(7 8 9) 17ó ..141

Figure 6.6 Analogy between ò3 2 1 2 3ó and ò4 3 2 1 2 3 4ó ...143

xxv

Figure 6.7 Activation function ... 147

Figure 6.8 Activation of òInterlaced 3ó while solving Sequence 107 148

Figure 6.9 Activation of òInterlaced 2ó in Sequence 110, in a particular run 150

Figure 6.10 Analogy between ò1 2 3 4 5ó and ò1 2 3 4 5 6 7ó... 152

Figure 6.11 Analogy between successive sub -ovals in Sequence 115 154

Figure 6.12 Analogy between the two groups shown above ... 155

Figure 6.13 Analogy between the starts of the two groups show n above 155

Figure 6.14 Analogy between successive groups in Sequence 118 156

Figure 6.15 Analogy between ò(2 3 5)ó and ò(2 3 5 7)ó .. 156

Figure 6.16 Example of grouping from Phaeaco .. 161

Figure 7.1 Copycatõs Slipnet ... 166

Figure 7.2 Mapping between ò1 2ó and ò1 2 3ó .. 171

Figure 7.3 Sequences to demonstrate the effects of long -term memory 171

Figure 7.4 Effects of having seen a similar sequence ... 172

Figure 7.5 Mapping between successive terms in target sequence 172

Figure 8.1 Mapping between successive terms of groups #4 through #8 188

Figure C.1 My program to solve all the sequences in Simon and Kotovsky (1963) . 203

Figure D.1 Initial screen for each sequence .. 205

Figure D.2 Screen shown after clicking òClick to view sequenceó 205

Figure D.3 Entering a term opens up next box ... 206

xxvi

xxvii

LIST OF TABLES

Table 1.1 Some transforms used by Superseek er ... 5

Table 4.1 Description of a run at the codelet level ... 87

Table 4.2 The same part of the run, now shown with creation and wait times 88

Table 4.3 The same part of the run, annotated with tree numbers 90

Table 4.4 Types of codelets on the Coderack at one point during a run 93

Table 5.1 Relative worth of various moves in Figure 5.3 ... 113

Table D.1 Summary of subjectsõ performance .. 207

Table D.2 Performance, continued .. 208

Table D.3 Performance, continued .. 209

xxviii

1

Chapter 1 INTRODUCTION

Section 1.1 T HE GOALS

A few years ago, I stumbled across the notion of a wicked proble m : the

idea was that some problems are inherently hard to define precisely, have

numerous and contradictory requirements, and have no òstopping ruleó (that is,

no easy way to determin e if a solution is good enough). The descriptions and

analyses that I read of a few such problems were fascinatingly apt and seemed

particularly compelling, since I was then dealing with a very ill -defined problem

at the software company I was working for. I bring up this concept here because

it enables me to explain what is being attempted in this project, and to describe

the constellation of pressures pulling the project in various directions.

At one level of description, the goal of this project is to de sign and

implement a computer program that can extend integer sequences intelligently,

and the project has in fact resulted in the creation of the program named

òSeqseeó (pronounced like the word òsexyó). Such a description of the projectõs

goal would be a ccurate, but also incomplete to the point of being misleading. It

leaves out the reasons for choosing this problem and for doing this project in

the first place. These reasons ñ to be explained shortly ñ greatly constrain the

solutions that are deemed acce ptable. The reasons also dictate which aspects of

the problem are central, and which aspects are likely to get the cold shoulder if

time runs out (as it eventually must because of deadlines and such). In the

absence of these very special and strict constra ints and biases, a project whose

goal was òa computer program to extend integer sequencesó would have

developed quite differently. Indeed, Section 1.2 explores one such program (a

part of the Online Encyclopedia of Integer Sequ ences), and the goal of that

section is in fact to point out what Seqsee should not do.

It would be more to the point to say that the goal of this project is to

explore human cognition by creating a computer model of activities that require

intelligence, a lways making sure to avoid using shortcuts that are available with

computers but are implausible in people. The extrapolation of integer sequences

2

merely happens to be the domain in which I have been carrying out the

exploration. Chapter 2 demonstrates the richness of (a very restricted subset o f)

the sequence -extrapolation domain and shows how this is an appropriate choice

ñ indeed, an excellent one ñ for studying cognition. The restrictions and their

justification are also provided there.

Seen this way as a computer model of intelligence, Seqsee is one more

program in the long procession to have emerged from the Fluid Analogies

Research Group (henceforth, FARG), over the past quarter -century. These

program s1 tackle a wide range of activities, including sol ving letter -string

analogy problems (Marshall, 1999; Mitchell, 1990) , solving Bongard problems

(Foundalis, 2006) and designing gridfonts (McGraw, 1995; Rehling, 2001) . The

common thread linking them all is the creation of computer programs that

ideally can perceive and understand complex situations in a human -like way,

and Section 1.2 spells out some of our beliefs about how such a program should

work. Over the years, the models built at FARG have progressed in numerous

ways. Another goal of this project is to build on this progress, and to improve

the shared underlying arch itecture along a variety of dimensions. There are a

number of ways in which the current Seqsee program could be made faster,

better, and stronger, and some of these are outlined in Section 1.3 . It is this

multitude of realizabl e improvements ñ not all of which can simultaneously be

achieved ñ that gives the project the feel of a wicked problem.

The term òwicked problem ó is attributed to Rittel and Webber (1972) , who

used it to characterize socially challenging problems. A modern example of such

a problem is òsolving terrorismó. Not everyone agrees about what terrorism is,

let alone what solving it would mean. Any òsolutionó would have to address

political issues, cultural issues, economic issues (since poverty is an enabler of

desperation and thereby of terrorism), education, and perhaps even climate

change (e.g., the D arfur tragedy was caused partly by an acute water shortage, in

turn caused by changing weather patterns). All these requirements that the

1 This list (sorted by the year the work was completed in) includes Jumbo (Hofstadter, 1983) , Seek-

Whence (Meredith, 1986) , Numbo (Defays, 1988) , Copycat (Mitchell, 1990, 1993) , Tabletop (French, 1995) ,
Letter Spirit (In two parts: McGraw, 1995; Rehling, 2001) , Metacat (Marshall, 1999) and Phaeaco (Foundalis,
2006) .

3

solution of a wicked problem must satisfy push in different, incompatible

directions, and improvements in one area are likely to cause worsening in others

(a cynical example of such a complex interdependency would be the fact that

reducing the number of weapons available might help decrease terrorism, but

stopping the sale of weapons is not òeconomically viableó). Wicked problems in

developing software systems are far tamer by comparison, of course, but can

still be confounding. Several writers have described how software development

is a wicked problem (e.g., Conklin and Weil, 1997; DeGrace and Stahl, 1990;

Fitzpatrick, 2003) .

The main benefit of casting the development of Seqsee as a wicked

problem is to enable readers to have a better sense of what to expect. At some

spots in this document, readers may feel that the implementation was made

òbarely good enoughó. I myself get the distinct feeling, for example, that the

implementation of long -term memory (Chapter 7) can be improved and fine -

tuned. As Seqsee currently stands, many low -lying fruits remain that would

considerably enlarge the set of sequences Seqsee can solve. In ot her words, I am

leaving off at a stage where the relatively low effort -to -gain ratio would favor

continued development. However, in that ratio, ògainó merely refers to a Seqsee

capable of solving more and more sequences. If the chief goal were to build a

program that expertly extrapolates sequences, this would be an unfortunate

time to stop; the chief goal, however, is to explore human cognition.

The project has reached a point where simple improvements, despite

making Seqsee more capable , would not make Se qsee more intelligent . Based on

what I have learned from implementing Seqsee, I have specific ideas about what

would be needed to make it smarter, and I describe them in the last chapter . To

convert these ideas into a working program , it would be necessary to tear the

current Seqsee down and rebuild it in a new way, and that must wait until after

my Ph.D.

Section 1.2 BRUTE-FORCE VS. CONCEPT-CENTERED STRATEGIES

To explain the central tenets of the FARG architecture, we begin by

examining its exact opposite: a computer p rogram named òSuperseeker ó (Sloane,

4

2007a) , whose goal is seemingly identical to that of Seqsee but whose approach

is actually profoundly antithetical to it.

1.2.1 SUPERSEEKER

Just to be clear, I must state here that the following discussion is not

intended as a criticism of Superseeker. Superseekerõs goal, although

superficially similar, is actually profoundly different from that of Seqsee, and its

techniques may well be appropriate for that goal.

Superseeker is a part of the Encyclopedia of Integer Sequences (Sloane,

2007b; Sloane and Plouffe, 1995) . That encyclopedia helps scientists or

mathematicians identify sequences that arise in their work, and I discovered

firsthand what a phenomen al resource the encyclopedia is. I was required to

solve a counting problem a f ew months ago. The problem involves a set of 2 n

people: n teachers and n students. The problem: in how many ways can we

choose a subset of these 2 n people that contains an equal number of teachers

and students? Note that we also count the trivial subset co nsisting of zero

teachers and as many students. Let us call this number of ways of choosing

f (n).

For small n, I was easily able to figure out the values of f (n): when n is 1,

2, 3, or 4, f (n) is 2, 6, 20 or 70, respectively. No pattern was apparent to me, so I

searched for these four terms in the encyclopedia. There I found not just the

formula (which happens to be 2ὲ!
ὲ!ὲ!

) and the next 20 terms, but also dozens of

other problems with the same answer (for example, the number of non -

decreasing sequ ences of length n made up of integers from 0 to n). I also found

many references to properties of this sequence. This was exactly what I needed

at that time.

With over 100,000 sequences, including our f (n), the encyclopedia is an

astounding repository . But consider now the situation if I had been working on a

slightly different problem. The new problem: count only those subsets with at

least one person in them. Let us call the answer to this modified problem g (n).

The first four values of g (n) are 1, 5, 19, and 69 ñ that is, one less than the

corresponding value of f (n). Now we are out of luck: the encyclopedia contains

5

no entry for g (n). This is where Superseeker enters the picture. To use

Superseeker, an email must be sent to superseeker@research.att.com , containing

a line such as òlookup 1 5 19 69ó. After a huge amount of computation,

Superseeker replies to the email with possible interpretations of the terms.

In order to make sense of the input ñ g (n), in this case ñ Superseeker

applies 115 distinct transforms to it in order to obtain new sequences that it

then looks up in the encyclopedia 2 (Sloane, 2007a) . A few of these transforms

are shown belo w. For each transform, I describe how the transformed sequence

h (n) is obtained from the original sequence, and what that transformed version

of g (n) is. I have included esoteric transformations like Möbius Inverse to show

that Superseeker casts a wide net . Readers may look up Möbius Inverse if they

wish, but the concept is not crucial to this argument.

Table 1.1 Some transforms used by Superseeker

Number Name Definition Transformed g(n)

T040 Add 1 Ὤὲ = Ὣὲ + 1 2, 6, 20, 70

T041 Subtract 1 Ὤὲ = Ὣὲ 1 0, 4, 18, 68

T018 Take differences Ὤὲ = Ὣὲ+ 1 Ὣὲ 4, 14, 50

T111 Möbius inverse Ὤὲ = ὫὨ‘
ὲ

Ὠ
Ὠ|ὲ

 1, 4, 18, 64

T082 Subtract factorial Ὤὲ = Ὣὲ ὲ! 0, 3, 13, 45

T010 Divide by factorial
Ὤὲ =

Ὣ(ὲ)

ὲ!

1, 2.5, 3.166, 2.45

For the sequence under consideration, transform number 40 (òAdd 1ó)

produces a sequence that is in the encyclopedia, thus enabling Superseeker to

extend the original sequence (by subtracting 1 from each subsequent term of

ò2, 6, 20, 70ó, which it can easily do).

Superseekerõs strategy is nothing like what a person would do. We do not

blindly go through a list of things to try, one by one. In computer science lingo,

a strategy like Superseekerõs is called brute -force . In what follows, I will refine

the notion o f brute force, and will point out that whether or not a strategy is

2It also attempts to fit a polynomial to the data and to apply other heavy -duty tools, such a s trying to

represent various types of generating functions as hypergeometric series. See Sloane (2007a) for the full list.

mailto:superseeker@research.att.com

6

considered to be brute -force admits all shades of gray. Both Superseeker and

people lie near extremes of the brute -force spectrum, but at opposite ends.

The transform òdivide by factorialó underscores the brute force used by

Superseeker. Let us ask ourselves if a person would try this transform on this

particular sequence (i.e., on ò1, 5, 19, 69ó). The sequence that would be

generated on applying the transform does not even consist of integ ers, and

would by definition be missing from the Encyclopedia of Integer Sequences.

Thus, in hindsight, the transform had no chance whatsoever of success. People

have the foresight to avoid the waste of time of applying this particular

transform to this particular sequence, and it is worth asking what the nature of

that foresight is and how it might be captured in a computer program. This is a

central question confronted by the work presented here, and we will encounter

it repeatedly.

To be sure, òdivide by factorialó is occasionally useful. For instance, it

reduces the sequence ò1, 4, 18, 96, 600, 4320, 35280ó3 to the far simpler

ò1, 2, 3, 4, 5, 6, 7ó. Still, sequences on which this transformõs application is

beneficial tend to have certain properties, and if these are not satisfied by the

given sequence, it is unlikely to yield promising fruit under this transform. All

sequences likely to benefit from this transform grow very rapidly, and, with the

possible exception of the first term, all of their terms ar e even. People notice

such shortcuts readily, once they gain familiarity with this type of problem. A

person would never try this transform without having a decent reason (however

vague) to believe a priori that it would succeed.

The non human quality of Su perseekerõs technique is that the steps it

takes are unmotivated. Superseeker has no sense that one transform appears to

have a better chance of success than another does, and its de cision to apply the

òdivide by factorialó transform is therefore not purposeful (and it is not really

even a decision, since, regardless of what the problem is, Superseeker always

applies this transform).

3 This is the number of permutations of the positive int egers in whic h n is the largest element that is

not fixed .

7

Yet, from another point of view, the transforms used by Superseeker are

purposeful: smart people wh o knew what they were doin g carefully chose these

transforms. For the sequences that Superseeker is likely to encounter ñ that is,

sequences arising in science or math ñ this set of transforms is well -suited .

Every single transform in Superseekerõs arsenal is an excellent choice , at least

for so me of these sequences. The non human quality is that Superseeker does

not carefully choose t he weapon to use; it always tries each and every weapon.

òWeaponó and òarsenaló are doleful words, and so I will switch to the

more neutral terms òtooló and òtoolsetó. Is it worthwhile for a program to spend

time considering which tool (s) to use? In many cases, the effort required to

choose wisely (both machine effort to make that choice, and human effort to

write the program to enable such a choice) fa r outweighs the saving achieved by

using only a few tools instead of using all available tools one by one.

Implementing a brute -force solution is typically much simpler, and as

computers have become quicker, the cost of using more tools than necessary

has decreased, making brute force a good choice for many situations.

As the number of tools in the toolset becomes larger, however, brute

force becomes less appealing. In any case, when one is attempting to create a

program that mimics human thinking, it is crucial to avoid brute force. In order

to suggest a way for choosing the right tool, consider what set of transforms is

appropriate for three Superseeker -like programs that differ only in the

sequences that they are required to solve, as described below:

1. The input sequences are those that the real Superseeker is likely to

encounter.

2. The input sequences are a subset of the above: only strictly

increasing sequences will be given to the program.

3. The input sequences are a subset of the above: only strictly

increa sing sequences will be given as input, with the added

restriction that no term is more than double the preceding term.

8

The set of transforms that best fit each of these situations is different.

Many transforms that make sense for the unrestricted domain wi ll be pointless

in the restricted domain. Conversely, some transforms that are sensible in the

restricted domain help only a minu scule fraction of the unrestricted domain ,

and for that reason, these transforms will not make it to the list of the most

usefu l sequences for the larger domain .

 Given a sequence, if the program is able to identify that it is of a certain

type (say, it notices that the sequence is strictly increasing), tools with a better

chance of success can be chosen. Such categorizing (or lab eling) is automatic in

people, and it is the principal method I am suggesting to get out of the brute -

force thicket.

People ñ unlike the case of Superseeker, which must choose from only a

few dozen possible transforms ñ have a seemingly limitless variety o f choices

in deciding how to respond to a situation, or even whether or not to respond at

all to a situation. A situation may appear to us to be a win -win situation, or to

pose an imminent danger, or to be hilarious, or to be infuriating; each such

(possib ly subconscious) categorization will change our set of possible responses

ñ narrowing it in some ways by ruling out some responses, but also widening it

in other ways by revealing otherwise hidden possibilities.

Responding to a win -win situation with a coo perative gesture, or to a

dangerous situation by fleeing to safety, can be said to be purposeful.

Superseekerõs choices of transforms are purposeful in the sense that, for the

sequences it is likely to come across, they are good choices. This

purposefulnes s, however, is shallow ñ it lacks sensitivity to different types of

sequences and does not produce a response tailored to the sequence being

considered.

1.2.2 DEEP BLUE

At one extreme of the brute -force spectrum are the purely brute -force

systems, and at the oth er extreme, we find its converse (human -force?). So far,

we have been talking about a point near the former end, but now, in the

9

remainder of this section, we will move away from pure brute force and toward

the other extreme.

The system we are about to con sider involves the world of chess -playing,

and follows a hybrid strategy, partly brute -force. If we were to imagine an

analogous program in the domain of Superseeker, it would do roughly this:

given an input sequence, it would check which of 8000 different labels are

appropriate for it. Labels may include increasing sequence , sequence consisting

only of primes , sequence consisting only of ò0ós and ò1ós, and so forth.

Depending on which labels were found to be appropriate, only a subset of the

possible trans forms would need to be tried. The l abeling process is purely

brute -force, methodically trying every label, but this allows the program to be

more purposeful when applying the few transforms consistent with the labels,

and avoids having to throw everything but the kitchen sink at the sequence.

Being brute -force in one way allows chess programs to be purposeful in other

ways.

The hybrid of brute force and purposefulness that I'm referring to is

Deep Blue, the first chess program to beat the reigning world cha mpion

(Campbell, Hoane, and Hsu, 2002) . When Deep Blue decided on its next move,

like most other game -playing programs, it used the classic look -ahead

technique. That is, it considered the possible next moves, responses to these

moves, responses to responses to these moves, and so forth. There could be

many possible moves, many responses to each move, and so on. This forms a

tree -like structure, called the game tree . Each node of this tree is a possible

board position that can be reached from the current position.

How far into the tree Deep Blue looked in order to decide its move is

called the depth of the search. A purely brute -force approach would search all

branches equally deeply (i.e., would search all nodes of the tree up to a certain

depth.) But this brute -force method would not be strong enough to beat the

reigning human champion, even for Deep Blue (which reached the speed of

evaluating 300 million board positions per second during its match against

Kasparov) as it would be able to look only a few steps ahead. What Deep Blue in

fact used, instead, is a technique known as selective extension of the game tree.

10

For each node, a decision is made whether nodes beyond it should be explored.

For making this decision , Deep Blue used a sophisticated method devised by

Claude Shannon (1950) ñ the program estimate d the quiescence (or stability) of

a given board position to dete rmine how beneficial looking further ahead would

be, and it deeply explored only those pathways where it was not clear that one

player had a decisive advantage .

I wish to point out that because of their use of selective extension, chess

programs are not purely brute -force: when they explore a trajectory through

potential future moves, it is because there is reason to believe that such

exploration is helpful or required. If in some position one player or the other

has a substantial advantage, further explora tion from that position is not

required. The program needs to look deeper only in situations that could turn

out either way.

How does a chess program estimate which player has, so to speak, the

upper hand? As I will soon elaborate, the function that does such estimation ñ

called the evaluation function ñ make s use of categories (or labels).

Deep Blue runs on specialized hardware known simply as òthe chess

chipó. This chip looks for 8,000 distinct patterns of arrangements of pieces on

the board, ranging fr om simple (e.g., the number of enemy rooks on the board)

to complex (e.g., enemy minor pieces guarding the 7 th and 8 th ranks of the file

that our rook is on). The evaluation function is in fact an 8000 -parameter

function, and was almost entirely hand -tuned by chess experts (Campbell, et al.,

2002) . Many of these patterns are obvious to any expert (human) chess player,

and have been present in chess literature for centuries, going back at least to

the sixteenth century, at which time the first (unofficial) world chess champion

Ruy López de Sigura had alrea dy studied several chess openings (de Sigura,

1561) 4. Deep Blueõs evaluation function is therefore an approximation of what

chess experts have long known to be some of the most relevant concepts.

4As an aside, fans of the author Pierre Menard may enjoy his translation of this chess masterpiece

into French (see, for instance, Borges, 1962) .

11

While the ability to estimate who has the advantage allows Deep Blue to

avoid being a pure ly brute -force program , as we have just seen, this ability itself

is based almost purely on brute -force. The presence and/or strength of each of

the 8000 patterns is always checked, in all situations. O f course, this contrasts

radically with how human experts evaluate a board.

1.2.3 COPYCAT

Let us take one final sample from the brute -force spectrum, moving

further away from pure br ute force to briefly consider a pair of programs in

which the a ct of labeling is not brute -force. Although we will be talking about

two different programs ñ Melanie Mitchellõs Copycat and Jim Marshallõs Metacat

ñ for our purposes , we can treat these as one. I bring Me tacat into the

discussion because I have access to a running version of Metacat ñ but not of

Copycat ñ and all screenshots will therefore be from Metacat. A full description

of these programs can be found in (Marshall, 1999; Mitchell, 1990) .

 Copycatõs task is to solve letter-string analogy problems such as:

Copycat Problem 1. If abc changes to abd, what does iijjkk change to?

Copycat Problem 2. If abc changes to cba, what does iijjkk change to?

Copycat Problem 3. If abc changes to abd, what does kji change to?

Let us focus on how the structure of òiijjkk ó is understood by Copycat

while solving problem 1 from the list above. For òiijjkk ó to be understood as

analogous to òabcó, the substring ii must be seen as a s ingle group 5, or more

specifically, as a sameness group since both its elements are identical.

Furthermore, òiijjkk ó should be seen as a successor group. Copycat successfully

labels all three pairs of letters (òiió, òjjó, and òkkó) as sameness groups, but this

process is not instantaneous. Figure 1.1 is a screenshot that shows an

intermediate sta ge (Subfigure a) and the final stage (S ubfigure b) in Copycatõs

understanding of this string. Notice how in the intermediate stage the two òiós

have been seen as a single group. The dotted rectangle around the two òkós

5 This is not absolutely true. Copycat sometimes produces an answer to Problem 1 that does not

require ii to be seen as a group ñ òiijjkl ó. This answer ignores the structures of òabcó and òiijjkk ó, merely
changing the last letter to its successor. The very shallow analogy there is òboth ôabcõ and ôiijjkk õ are stringsó.

12

indicates that Copycat is considering grouping them into a chunk but has not

done so yet.

(a)

(b)

Figure 1.1 Intermediate and final stages in understanding òiijjkk ó

At stage (a) above, there is reason to believe that sameness groups are

present in and relevant to understanding the string, as one such group has

already been seen (namely, the òiió) and a second one looks promising (the

òkkó). This set of òhintsó puts pressure on Copycat to explicitly search for

sameness groups, and this leads to finally seeing all three sameness groups.

What is not shown in the figure is that Copycat was simultaneously trying

to make sense of the òabcó in the input, leading it to believe that successorship

was relevant in the problem, and therefore it also explicitly searched for

successors, in the end seeing the entire òiijjkk ó as a large successor group (as is

represented by the next -to -largest rectangle in Subfigure b).

Copycat keeps track of how r elevant various concepts appear in a

component called the Slipnet. The screenshot in Figure 1.2 shows how relevant

Copycat considers three concepts (predecessor , successor, and sameness) at

stage (a). The bigger a circle is, th e more relevant that concept is considered to

be at that moment, and the likelier Copycat is to take action based on that

relevance (e.g., to search for sameness groups).

Figure 1.2 Activation of three concepts in Copycat

13

Copycatõs use of concepts is much more explicit than that of Deep Blue.

As with Deep Blue, concepts allow Copycat to follow promising paths. Unlike

the case for Deep Blue, the number of paths Copycat might follow is not well -

defined or even bounded, and the use of concepts is therefore indispensab le.

Concepts allow Copycat to produce insightful answers, as occasionally happens

when it is given the following problem:

Copycat Problem 4. If abc changes to abd, what does mrrjjj change to?

Copycat almost always sees òabcó as a successor group, but it sometimes

sees òmrr jjj ó as a successor group as well, with the length increasing (as

opposed to the letter category in the case of òabcó), and on such occasions it

produces the answer òmrrjjjj ó.

It is our belief that concepts and their activation must be deeply

understood if we are to make headway in cognitive science. I quote a paragraph

from Fluid Concepts and Creative Analogies (Hofstadter and the Members of the

Fluid Analogies Research Group, 1995, p. 466) :

We believe that if AI and cognitive science are to clarify the
workings of the human mind, and partic ularly the human mind as a
creative engine, they must pay far more explicit attention to the
level of concepts and analogies , and move away from the magical
hope that such phenomena, with their extraordinary richness and
complexity, will simply emerge some how all by themselves, as a
result of training networks of artificial neurons. Of course, neural
hardware underpins all conceptual phenomena, but then again, so
does elementary -particle physics. The real question is: What kinds
of intermediate ðlevel struct ures and mechanisms, located
somewhere between quarks and the cortex, do the work that
counts?

I will have the opportunity to argue (in Chapter 5) that Seqsee is a tiny bit

further away from the brute -force end of the spectrum than Copycat or Metacat

are ñ its actions are more specific, and in that sense, more purposeful . I will

show how concepts help Seqsee keep focused, and indeed help it decide what to

focus on.

14

Section 1.3 T HE SUBGOALS

Seqsee is an attempt to build on lessons learned and progress made in

the devel opment of earlier FARG models. Like Seqsee, each of the earlier

programs represents about half a dozen person -years of work, and often more.

All of these programs have built on their predecessors, sometimes directly, by

sharing the domain and the code (for example, Metacat (Marshall, 1999) extends

Copycat (Mitchell, 1990) 6), but usually less directly, by just borrowing ideas a nd

architectural insights (but not the code or the problem domain).

A careful analysis of how FARG models have progressed over the years

reveals a few definite trends. This section describes some of these trends, and

thus catalogs some of the aspects in wh ich successive FARG projects have made

progress. I also discuss the areas in which I hoped to take Seqsee further than

earlier projects. I believe I have made substantial progress in some areas, little

or none in others, and have slid back in an area or tw o. Additionally, I describe

one particular improvement that has not yet been realized, but that in some

form or other has been wishful thinking routinely expressed on our research

groupõs mailing list: a generic FARG library that would make it easier to create

future implementations targeting other domains.

A few remarks are in order regarding the grouping of potential

improvements under the similar -sounding headings of extensibility , scalability,

and generalization . These are interdependent, and the follow ing split is

necessarily somewhat artificial.

Extensibility refers to the ease with which Seqseeõs ability to extrapolate

sequences can be augmented. It is a convenient fiction to think of Seqsee as

consisting of two layers ñ although the separation betwe en the two is not clean

ñ and to call these the òhardwareó layer and the òsoftwareó layer, even though

both are of course implemented in software. Naming the layers in this way

allows me to use the phrase òprogramming Seqseeó in a meaningful way ñ the

proc ess of programming Seqsee does not include making changes to the

6In order to be accurate , I must point out that Marshall translated the Copycat code from Lisp to

Scheme before extending it. However, these languages are close enough that saying that he extended òthe
same codeó is only a small fib.

15

underlying architecture. We can think of the lower layer as a virtual machine,

and of the upper layer as the software running on this machine. By the word

òextensibilityó, I mean the idea of augmenting Seqseeõs ability by modifying only

its software layer.

 How comfortably Seqsee can deal with inputs containing hundreds of

terms or with situations involving hundreds of categories is the concern called

scalability . In such situations, Seqsee ma y be unable to cope for two types of

reasons. First, Seqsee may be using up too many resources (for instance,

memory and time), and a quicker computer and a greater amount of RAM would

solve the problem. Though I have spent a significant amount of time in making

sure that Seqsee is not very slow, that is not my main concern here. I worry

more about the s econd source of non -scalability: Seqseeõs inability to deal with

thousands of categories or thousands of groups may be caused by deeper

shortcomings of its architecture, resulting from an incorrect understanding or a

faulty implementation of the underlying cognitive processes. If Seqsee had a

repertoire consisting of thousands of categories, for instance, it might happen

that it would pay attention to hundred s of these instead of being able to zoom

in on just a few that seemed relevant to a given problem, and for that reason it

would be unable to extrapolate effectively. The same spreading -attention -too -

thin effect can potentially occur when thousands of group s are present. Just

throwing a hundred ðtimes ðfaster computer at this deficiency would not make it

go away, and therefore, unless it is fixed, this issue would limit Seqsee to having

only a small set of categories. The subsection scalability considers this issue.

Finally, the subsection on generalization looks at how well suited

Seqseeõs techniques are for other domains. As in the section on extensibility, I'm

primarily referring to modifications at the software level.

1.3.1 EXTENSIBILITY

1.3.1.1 EXTENSIBLE A BILITY TO SEE COMPLEX STRUCTURES

The ability of FARG programs to see complex structures has increased

over time. Copycat was unable to see how the string òaabbccó could be changed

into the string òaabbccdd ó. In fact, Mitchell gave Copycat only the ability to

16

describe c hanges between strings of equal lengths where only one letter had

changed. Metacat was able to perceive far more general changes, including

between the two strings just mentioned. It could also see changes involving

swapping letter -categories, as in the ch ange from òaabaaó to òbbabb ó. Seqsee

takes this further, and it can successfully extrapolate Sequence 1, for example.

Sequence 1.

A better way of identifying potentially analogous structures can be

credited for this increased ability , as I will describe in Chapter 5. This ability is

extensible ñ for example, adding to Seqsee a rudimentary notion of the prime

numbers (to identify primes and to be able to say if two numbers are successive

primes) allows it to see, with no extra work, a large number of sequences based

on primes. Chapter 6 contains a careful discussion of such an addition to

Seqsee.

It should be pointed out that sequence -extrapolation challenges are

similar to Copycat challenges. Sequence 1, fo r instance, is like the following set

of Copycat problems:

Copycat Problem 5. If aab changes to aababc, what does aababc change to?

Copycat Problem 6. What does a change to?

Copycat Problem 7. What does aababcabcd change to?

Section 2.8 explores the deep connections ñ including historical ñ

between the Seq see and Copycat domains.

Seqseeõs ability to see complex structures is extensible in the sense that it

is possible to add categories ñ without having to modify the underlying

architecture ñ that allow Seqsee to see more types of structures than it could

before. We will see examples of some such extensions in Chapter 6.

1.3.1.2 A BILITY TO D ISCOVER LONG -D ISTANCE RELATIONS

Section 5.7.4 shows how Seqseeõs mechanism of discovering relations

allows it to see relations between objects far from each other (Copycat and

17

Metacat are unable to do this, and for that reason they cannot solve problems

such as Copycat Problem 8).

Copycat Problem 8.
If abpqabcpqr changes to abpqabcpqrabcd , what does

ewefwx change to?

This ability is needed if Seqsee is to understand, f or example, Sequence 2.

Sequence 2.

This ability is also extensible in that addition of categories allows Seqsee

to draw analogies between objects that it otherwise could not, and hence it can

create a greater variety of relations.

1.3.1.3 REMEMBERING BETWEEN RUNS

Seqsee can remember aspects of solutions and relations that it has seen.

This helps it in subsequent runs to see similar sequences more quickly

(Chapter 7). Copycat (1990) did not have such a mechanism, but Metacat (1999)

had the beginnings of one: although it could not make use of what it

remembered to help it solve a pro blem, it could nonetheless point out at the

end of a run that an earlier problem was similar to the one it just solved.

Phaeaco (2006) has the most functional permanent memory of all FARG models

so far.

There are psychologically interesting i ssues here. The fact of having been

frequently exposed to Sequence 1 should enable Seqsee to understand Sequence

3 more quickly, as it is òexactly the same sequenceó, in a certain sense of

òexactlyó.

Sequence 3.

1.3.1.4 EASE OF A DDING NEW GOALS

Apart from extrapolating sequences, we may wish Seqsee to describe

sequences and to make variations on a given sequence. Ideally, it should be easy

18

to add novel goals of this sort. Metacat, for instance, can run in two mode s: it

can either find an answer to a letter -string analogy problem, or, in case it is told

the answer, it can attempt to justify it. Seqsee has unfortunately made no

progress in this area.

1.3.2 GENERALIZATION

1.3.2.1 SEPARATION OF A RCHITECTURE AND DOMAIN

As described i n Section 1.1, Seqsee is intended to model key mechanisms

of human cognition, not just some curious, highly specialized ability to perceive

integer sequences. If the implementation is very tightly tied with and optimized

for extending sequences, changing S eqsee to work in another domain would

involve an impossible amount of work. It would really amount to writing a new

program from scratch. Consequently, I have attempted to design Seqsee so that

most of its components do not care about the domain. The Coder ack (Chapter

4), the stream of thought (Chapter 5), several visualization tools (Chapters 3 and

6), and (for the most part) long -term memory (Chapter 7) would work essentially

unchanged in any domain. Other components, however, such as the Workspace

or ind ividual codelets, are tied to the domain, and would need to be redone if

one were trying to retarget Seqsee.

A goal of this separation is to create a reusable library that would allow

rapid creation of FARG implementations. The current work does not go far

enough in this direction ñ no reusable library has been produced ñ but at

some point in the future, I plan to tear down and rebuild Seqsee to incorporate

the lessons I have learned in this project. When I do so, I will attempt to make a

yet cleaner separa tion between the domain -specific aspects and the domain -

independent aspects of the program.

1.3.2.2 A BILITY TO REPRESENT A RBITRARY CATEGORIES

People routinely create categories that constitute big challenges to model

faithfully (i.e., without cognitively implausib le shortcuts). Consider the category

Einstein , which, at first blush, seems to contain one individual (or perhaps also

includes other people named òEinsteinó). But the word òEinstein ó is routinely

used to creatively describe other individuals, including Ch arles Hartshorne (who

19

has been called òthe Einstein of religious thought ó), Dr. Magnus Hirschfeld (òthe

Einstein of sex ó), and Eric Drexler (òthe Einstein of nanotechnology ó). We also

manufacture categories on the fly (e.g., òthings to pack for the Mexico tripó).

Lakoff (1987) discusses how even an everyday category such as òmotheró is full

of nuances and in extreme cases splits into several related categories such as

biological mother , stepmother , surrogate mother , adoptive mothe r , foster mother ,

and donor mother . Is Seqseeõs way of using categories rich enough to give rise to

such diversity and complexity?

Before answering this question, I need to draw a distinction among three

types of categories. First, there are categories tha t the current incarnation of

Seqsee already has when the program starts a run (the òbuilt-inó categories).

Second, there are categories that the current incarnation can generate on the fly

if needed (òauto-generatedó categories). Third, there are categories that a

programmer can add to Seqsee with a small amount of effort.

The question òIs Seqseeõs way rich enough?ó splits into a couple of

questions: òAre the current categories (whether built-in or auto -generated) rich

enough?ó, and òCan deep categories be added easily?ó

It might be argued that this third set of categories is sufficiently vaguely

described to give me enough wiggle room to claim fantastic things as being

easily realizable with just a little more effort than I have bothered to put in. I

will t herefore try to be a bit more precise about what adding a category to

Seqsee requires of the programmer, and more fundamentally, I will try to

discuss the shades of gray in the notion of Seqsee (or a person) òpossessing a

categoryó.

All this we will discus s in Chapter 6. For now, I will provide two examples

of built -in categories in Seqsee: one shallow, the other deeper. First, we look at

the category òprime numberó, which was recently added to Seqsee. Primes are

not a part of Seqseeõs domain (which is described in Chapter 2), but they were

added nonetheless, in order to test certain aspects of the implementation, and

they are turned off by default. Seqsee has a switch that can be flipped to imbue

it with a rudimentary òworking knowledgeó of primes. Even after the switch has

http://www.harvardsquarelibrary.org/unitarians/hartshorne.html
http://us.imdb.com/title/tt0161542
http://cyborgdemocracy.net/2003/12/navrozov-declares-drexler-einstein-of.html

20

been flipped on, however, Seqseeõs understanding of primes is extremely

shallow ñ as opposed to completely nonexistent before. Seqsee has no

conception of division, of quotients and remainders, or of factors, let alone of

counting a numbe rõs number of factors. It does know enough about primes,

however, to allow it not just to see the canonical ò2 3 5 7 11ó but also to

successfully extend sequences such as:

Sequence 4.

Sequence 5.

Now that I have described the shallowness of a particular category in

Seqsee ñ and provided an example of how having even a shallow category can

help in extending moderately complex sequences, thereby giving an illusion of

understanding ñ I must point out that Seqseeõs understanding of such

categories as ascending group is far f rom completely hollow. Seqsee has the

ability to recognize instances of this concept , to see relations between instances,

to create specific subcategories on the fly (e.g., ascending group starting at 2),

even to òsmelló the category at a distance (by noting the presence of successor

relations and guessing that successor groups may well exist and be relevant),

and to create more complex categories based on this category (an example of

which can be seen in the outer ovals of Sequence 1).

One of my main goals was to give Seqsee the ability to add categories

easily. Copycat and Metacat had a fixed list of categories, whereas Seqsee

creates categories on the fly and is also easily extensible. Phaeaco also has an

extensible category s ystem.

1.3.3 SCALABILITY

People have the ability to deal with hundreds of thousands of categories,

if not millions. Consequently, being able to deal with a large number of

categories was an important goal of Seqsee.

21

1.3.3.1 A BILITY TO COPE WITH LARGE I NPUTS

Seqsee seems to have little trouble in dealing with sequences even if

hundreds of initial terms are given. If a greater number of initial terms are

revealed, in fact, Seqsee is a bit quicker in reaching the solution (Sections 3.2

and 3.3 contain examples of this pheno menon).

There are cases, however, when being given a large number of terms

confuses Seqsee: such situations include cases where parts of the sequence

seem to fit together nicely, but do so misleadingly. We will see examples of such

situations also in Chapt er 3.

1.3.3.2 A BILITY TO COPE WITH LARGE NUMBERS OF CATEGORIES

As the number of active categories grows (because Seqsee comes to

believe that certain categories are relevant to understanding the current

sequence, or because optional features in Seqsee are turned o n that activate

more categories), Seqseeõs attention can get spread quite thinly, and its

performance can thus deteriorate. Chapter 8 contains specific ideas that hold

promise for improving the situation.

I must hasten to add that although in the presence of a large number of

categories, Seqseeõs performance occasionally deteriorates, the problem is

usually caused by categories whose presence Seqsee cannot "smell" easily ñ

that is, Seqsee does not have good intuitions about what situations these

categories are relevant in, and so it needlessly pays attention to these. Most

categories in the core of Seqsee do not suffer from this problem.

1.3.4 CONTEXT -SENSITIVITY

All of Chapter 5 is dedicated to the exploration of context -sensitivity in

Seqsee and its predecessor s. To avoid repeating myself, here I will present just

two concrete examples of how, over the decades, FARG programs have become

increasingly sensitive to context.

First, Copycat and Metacat can detect the importance of successor groups

in a problem and ca n adapt their actions accordingly. They do not, however,

become sensitive to the presence of òsuccessor groups that start with có, even if

22

many of these are discovered in the problem. Seqsee is more sensitive to this

finer sort of distinction.

Second, many of Metacatõs advances over Copycat directly increased the

degree of context -sensitivity. For example, the introduction of the architectural

component Thematic Spaces allowed Metacat to realize in a particular problem

that successor groups are relevant in some of the strings in a given problem but

not in all of them. When Copycat thinks of successor groups as important, it

seeks such groups in all strings. The existence of Thematic Spaces allows

Metacat to be more focused ñ it can search for successor group s in those

strings where there is a greater reason to suspect their presence. The additional

component of Metacat called the Temporal Trace, likewise, allows Metacat to be

more sensitive than Copycat is to its own processing, as it can detect when it

gets stuck in a rut, whereas Copycat or Seqsee are never aware of going over the

same territory time and time again.

Seqsee is sensitive to a wider range of contexts, I think, than either

Copycat or Metacat is, as I will attempt to show in Chapter 5.

1.3.5 V ISUALIZAT ION TO GAIN INSIGHT

If Seqsee is to succeed as a tool for exploring cognition by simulating it, it

is not enough to see just the final result generated by Seqsee on a given

problem. Much more important is to see how it works in general and what it

does on specific runs. Without a good visualization tool, however,

understanding such things is hard. An important goal has been to build tools

for this purpose. These have had the added benefit of being useful in the

development of the program, and they also make it easier to explain the ideas

behind Seqsee.

1.3.6 SUBGOALS IN TENSION

Designing Seqsee to be easy to extend and designing it to be easy to

generalize to other domains are distinct goals that pull in different directions.

Improving either one may cause a wors ening of the other. The Workspace (the

area where perceived groups and relations are kept) is an example. In Seqsee,

the Workspace contains groups and relations. For each group, Seqsee knows its

23

location in the input sequence. This is clearly optimized for sequences. In

moving to another domain (say, to the domain of playing Go), the workspace

structures would have to be different. Seqsee has several subroutines that make

it easy to write codelets solely for the domain of understanding sequences, and

these will not generalize to the domain of playing Go.

Generality and visualization are also in tension. Displaying a sequence

and chunks within it is easy, as is displaying a Go board. However, creating a

generalized display that can be used for both the domain of sequences and for

the domain of Go is trickier (indeed, I have no ideas whatsoever on how one

might attempt this).

In the same vein, extensibility and scalability are at odds. As more

categories and goals are added, the likelihood of their interfering with each

other goes up, and Seqsee may become less scalable.

Section 1.4 T HE STRUCTURE OF THIS DOCUMENT

Chapter 2 describes the Seek -Whence domain and, using dozens of

sequences, points out its cognitive richness. Chapter 3 shows how well Seqsee

performs on these se quences, and compares its performance with human

performance. Chapter 4 begins a description of the internals of Seqsee by giving

a birdõs-eye view of the architecture, and Chapters 5, 6, and 7 continue the

description of Seqsee's architecture showing, res pectively, how the key notions

of context, categories, and long -term memory have been implemented. Finally,

Chapter 8 points out some of the shortcomings of the current implementation

with specific remedies suggested for a few of them.

24

25

Chapter 2 THE SEEK-WHENCE DOMAIN

The Seqsee project is an attempt to model fundamental and general

aspects of human cognition. The aspects being modeled are not limited to any

single domain. However, the actual domain that Seqsee works in is of necessity

constrained. In this chapte r, I describe this domain in detail, and I explain the

limitations on the domain and show how these constraints promote certain

types of explorations more deeply.

Before diving into the details, I would like to clarify my use of the names

Seek-Whence and Seqsee. The Seek-Whence domain was introduced by Douglas

Hofstadter around 1977, and he describes it along with the ideas leading up to

it in Metamagical Themas (Hofstadter, 1985) and in Fluid Concepts and Creative

Analogies (Hofstadter and the Members of the Fluid Analogies Research Group,

1995) . The Seek-Whence program , on the other hand, is a program ñ yet

unrealized ñ that would be able to solve problems in the Seek -Whence domain

as well as a human can, and in the same way. It is thus a wishful abstraction not

achievable anytime soon. Seqsee can be thought of as a stepping -stone on the

long path to the Seek -Whence program.

Section 2.1 WHAT CONSTITUTES A PROBLEM IN THIS DOMAIN ?

The notion of a p roblem in the Seek -Whence domain can be explained

with an example. A human being first thinks of an integer sequence. For the

sake of concreteness, assume that the infinite sequence thought of is

Sequence 6.

This sequence is made up of rising blocks of increasing lengths: 1 ñ 1 2

ñ 1 2 3. The person then chooses how many initial terms to reveal to another

person or to the program. Depending on this choice, the solver will receive as

input ò1 1 2 1 2 3ó or ò1 1 2ó or any of the other possibilities , including those

ending in an incomplete block . Clearly, each of these inputs presents a slightly

different cognitive challenge to the solver. For example, the input ò1 1 2 1ó,

26

ending in an incomplete final block, is likely to be more confusing than the two

inputs shown ea rlier.

Let us now look at the situation from Seqseeõs perspective. For

concretenessõs sake, assume that it is given ò1 1 2 1ó as input. Seqsee sees only

these initial four terms, and, of course, infinitely many sequences have exactly

these initial terms. M any such sequences could be random, but even if not

random, infinitely many start out this way. What to do?

The problem is not as bad as it may seem. Even though there really are

infinitely many possibilities, not all of them are equally plausible. An anal ogy

will make this precise. Imagine that on a cold December morning your car

refuses to start. There are several possible explanations for this, including the

explanations that somebody stole the engine, or that this is a prank and your

frustration is bein g taped for the benefit of YouTube. These explanations are

highly implausible, though technically possible in a nitpicking sort of way.

These, and infinitely many others, do not enter your mind at all ñ at least not at

that early a stage of frustration. In stead, the thoughts that you do entertain are

usually simpler and informed by similar episodes from earlier in your life.

In the case of Seqsee, analogously, only a few of the possible

continuations are plausible. Still, multiple simple extrapolations rema in in

contention. I show seven possible extrapolations of ò1 1 2 1ó below, including

the one that the human inventor intended. These are shown in a format that

brings out their internal structure. However, the reader must keep in mind that

what Seqsee is g iven as input is nothing but raw numbers, and it must draw its

own ovals if needed.

Sequence 7.

Sequence 8.

27

Sequence 9.

Sequence 10.

Sequence 11.

Sequence 12.

Sequence 13.

Assuming that Seqsee is able to imagine these possible extrapolations, it

needs to try to single out the one that is the correct sequence ñ namely, the

sequence thought of by the human. To pick out the correct answer or to check

the answer that it currently believes in, Seqsee may ask the human a question

like òAre the next two terms 3 and 1?ó. In this case, it will get ònoó as the answer

since the next two terms are ò2 3ó. When Seqsee has successfully extrapolated

the sequence by a few terms and finally trusts the theory of the sequence that it

has come up with, it finishes up by describing the sequence in words.

A òproblem-solvingó episode with Seqsee is thus really a back -and -forth

dialogue between the program and the sequence -inventor as opposed to being a

simple òsequence in, extrapolation outó affair.

Section 2.2 A SAMPLER OF SEQUENCES

I present below a variety of sequences from the Seek -Whence d omain,

chosen to showcase the domainõs breadth.

2.2.1 PERIODIC AND QUASI -PERIODIC SEQUENCES

Let us begin with simple periodic sequences. Here are two examples with

periods of 1 and 3, respectively:

28

Sequence 14.

Sequence 15.

Throughout, I will point out metaphorical knobs that we can twist to

increase or decrease the cognitive difficulty of the sequence. A knob available

for periodic sequences slightly alters the periodic nature ñ instead of repeating

the same thing, a slight variation is made. Although no longer periodic in a

strict mathematical sense, the resulting sequence retains a periodic feel, and I

shall call such sequences quasi -periodic . Sequence 16 is just a spicier, quasi -

periodic version of the periodic Sequence 15 :

Sequence 16.

Of course, we can twist this knob further, and make variations in more

than one place, even heterogeneous variations:

Sequence 17.

The variation may also play with lengths, and in that case, the quasi -

periodic nature of the resultant sequence is hard er to discern in the raw form,

but it stands out when shown with ovals:

Sequence 18.

Sequence 19.

Although understanding this sequence is simple for people, the mental

skills needed for its understanding are not so simple. To understand even this

29

simple sequence, when i t is shown to us without ovals, we need to be able to

recognize ò(1 2 3)ó as a single chunk, to recognize that it is similar to the chunk

ò(1 2)ó, to recognize that the solitary ò1ó at the very beginning is really a

degenerate chunk ñ ò(1)ó ñ and also to r ecognize ò((1) 7)ó and ò((1 2) 8)ó as

analogous structures.

Before we move on to other sequences, I would like to point out that

Sequence 17 affords an interesting example of a phenomenon that appears

paradoxical at first blush ñ that restrictions can actually enrich a domain. The

next few terms are ò(4 4 22) (5 3 23) (6 2 24)ó. As the middle element in each

block of the sequence keeps getting smaller, it will eventually reach ò1ó. How

should the sequence continue? Several possi bilities come to mind. If negative

numbers are admissible 7, the simplest solution is to just continue with

òé (7 1 25) (8 0 26) (9 -1 27) é,ó and this is what Seqsee currently does.

However, the original Seek -Whence domain does not include negative numbers

and this òsolutionó is therefore sweeping the problem under the rug. Restricted

to using only the natural numbers, the possible ways of dealing with the middle

element get creative, as shown below. Note that all of these solutions are

extravagant and unca lled for if negative numbers are perfectly acceptable within

the domain.

¶ The òstickyó solution: òé (7 1 25) (8 0 26) (9 0 27) (10 0 28) éó

¶ The òbouncingó solution: òé (7 1 25) (8 0 26) (9 1 27)

(10 2 28) éó

¶ The òpretend non-existenceó solution: òé (7 1 25) (8 0 26) (9 27)

(10 28) éó

¶ The òbalkingó solution: òé (7 1 25) (8 0 25).ó (i.e., the sequence

stops here).

7 Negative numbers are not a part of the original Seek -Whence domain. The domain was designed in

order to have nothing to do with math notions of any sophistication, and to have all numbers have meanings
as counting numbers. I initially left the negative numbers in in Seqsee bec ause it was easier to code that way. I
always intended to take them out later, but never got around to it.

30

2.2.2 A SCENDING GROUPS

An instance of the category ascending is the sequence fragment ò3 4 5 6ó,

and we have already seen sequence s Involving th is category . One of the simplest

sequences based on this category is:

Sequence 20.

Many knobs come to mind that can increase the difficulty of

understanding such a sequence. In Sequence 20, the left end of each group stays

at ò1ó, and only the right end changes. This is the natural end, in a certain sense,

because the following sequence seems slightly harder:

Sequence 21.

Of course, both ends can move:

Sequence 22.

 Or both can move without changing the length:

Sequence 23.

Or length can play an important role , with the start of each group equal

to the length of the previous group:

Sequence 24.

And I have barely scratched the surface, since I have not mentioned

changes to the numbers themselves without changing the overall structure of

the sequence:

31

Sequence 25.

Throughout thi s document, I have displayed sequences by indicating

groups with ovals. The obvious reason for doing so is to prevent slowing the

reader down. Even though I have half a dozen years of working in this domain

under my belt, and despite my great familiarity w ith all of these sequences,

some sequences I have displayed here still take me a few seconds to understand

if they are shown to me without the ovals.

With the ovals present, however, it is a different story. Even if seeing the

sequence for the first time, the reader will trivially understand it, with very little

or no effort. There is no need for me to spell out what is happening in, say,

Sequence 23 . This ability to easily and effortlessly grasp an enormous variety of

simple p atterns is the standard, vanilla human cognitive ability that we wish to

capture in Seqsee or Seek -Whence.

2.2.3 DESCENDING GROUPS AND SAMENESS GROUPS

Let us return to the goal of exhibiting more sequences. Analogous to

ascending are the categories descending and sameness, and these participate in

the following sequences:

Sequence 26.

Sequence 27.

2.2.4 COMBINING ñ OR CROSSING ñ SEQUENCES

The complexity of sequences can be stepped up by òcombiningó two or

more sequences. I do not have a formal definition of òcombinationó, but by

look ing at the following sequences, the reader should be able to see what I am

doing. Combining Sequence 26 with Sequence 17 (repeated below) produces, for

example, Sequence 28 , which is more complex than either:

32

Sequence 26

Sequence 17

Sequence 28.

In the same combining spirit, we can also combine Sequence 7 with

Sequence 26 (both repeated below), and obtain Sequence 29 or Sequence 30 .

Sequence 7

Sequence 26

Sequence 29.

Sequence 30.

We can take our newfound zeal for combination further by combining

Sequence 7 with itself to yield:

Sequence 31.

Sequence 31 is the most complex sequence we have created so far. Ap art

from being interesting as a test case because of its complexity and hierarchical

structure, it will also serve as a good example of a couple of new ideas to be

introduced later ñ òsquintingó in Section 2.5 and garden-path sequences in

Section 2.6 .

33

Section 2.3 PATTERNðBASED SEQUENCES

Canonical examples that many people come up with when thinking about

integer sequences include the following:

Sequence 32.

Sequence 33.

Sequence 34.

Sequence 32 consists of the odd numbers; Sequence 33 consists of the

prime numbers; and the sequence after that is made up of the Fibonacci

numbers (with each term being the sum of the previous two terms). As members

of the mathematical category integer sequences , these are quite central. And yet,

all of these sequences lie outside the Seek -Whence domain.

Why banish these sequences? To answer this question, let us begin with

Sequence 33 . Recognizing what this sequence is requires, among other things,

the ability to recognize ò5ó and ò7ó as primes. If we open the gates to requiring

such knowledge as ò7 is a primeó, logically we must also allow in such factoids

as ò21 is a triangular numberó and even ò60 is the size of a simple groupó8. This

last factoid leads to a bizarre sequence (Sequence 35) that consists of the

primes all the way through ò59ó, and then, perplexingly, is followed by a ò60ó,

and then goes on. This sequence would have been frustratingly hard to fathom,

even f or some mathematicians, if I had not just let the cat out of the bag:

8A simple group is a mathematical object that is defined as òa group that has no proper normal

subgroupó. In other (but vague) words, a simple group has no òfactoró apart from ò1ó and itself, and is
therefore like a prime number. In fact, any group whose number of elements is a prime number is necessarily
a simple group. The Icosahedral group (the group of symmetries of the regular icosahedron) has 60 elements,
and it is the smallest simple group with non -prime size. Obviously, I do not expect Seqsee ever to understand
this.

34

Sequence 35.

Is such specialized knowledge central to cognition? No, certainly none of

the individual pieces of knowledge is needed for intelligent thinking. A vast

majority of humanity is happi ly oblivious of these mathematical facts and yet

gets by just fine. An average person can easily handle lots of sequences without

any specialized technical knowledge at all.

However, although the specific categories òprime numbersó and

òFibonacci numbersó can be dispensed with, the ability to create and use

categories in general is decidedly indispensable. As will be shown, the Seek -

Whence domain ñ though stripped of mathematical knowledge of the sort just

mentioned ñ is rich in categories, both pre -existe nt and created on the fly.

If even sequences like the prime numbers and odd numbers are outside

Seqseeõs domain, just what is left? This chapter gives dozens of examples, but

the basic criterion is easily summarized: sequences created using the concepts

nu merical successor , numerical predecessor , equality , and length are within the

domain. This description intentionally leaves out addition and subtraction, let

alone multiplication, division, and factors. This is so because even keeping

addition in the pictu re brings in sequences like the Fibonacci numbers (where

each term is the sum of the preceding two), the odd numbers (where each term

is the sum of the preceding term and the number 2), the squares (where the n th

term is the sum of the first n odd numbers) and so on.

Despite the extremely stripped -down, austere nature of the Seek -Whence

domain, there are plenty of complicated challenges in it, such as Sequence 36

below, and also challenges that people initially find perplexing, such as

Sequence 37 .

Sequence 36.

35

Sequence 37.

As was stated in the previous chapter, the primary goal of this project is

to explore cognition, and Seek -Whence merely happens to be the domain chosen

in which to conduct such an exploration. I t is therefore not the primary goal of

this project to create an expert sequence -extrapolator, though obviously we

would like to make Seqsee good at its task. Keeping addition òmathematizesó

the domain, and since it is not the goal of the project to develo p a model of

expert knowledge in a technical domain, addition (and other mathematical

concepts) was kept out deliberately. (See further discussion in (Hofstadter and

the Members of the Fluid Analogies Research Group, 1995)). It makes sense to

limit the complexity of the domain so long as we do not oversimplif y. A

dazzling array of cognitively rich sequences remains. Various sections in this

chapter present samplers of sequences that amply demonstrate that the

simplification achieved by barring addition and other mathematical concepts

does not throw out the bab y with the bathwater.

Section 2.4 MULTIPLE WAYS OF SEEING

There is nothing in the world that has a unique way of being perceived:

someoneõs trash is anotherõs art, someone's terrorist is another's liberation

fighter , and someone's honest criticism is another's heinous blasphemy . More

mundanely, George W. Bush can be seen as òthe previous presidentó or as òthe

43 rd presidentó or perhaps even as òGeorge IIIó (having been preceded as

presidents by George Washington and George Bush Sr.).

Two ways of understanding something might be mathematically identical

and yet vastly differ psychologically, as Richard Feynman points out (1965, p.

53). Having described inverse -square laws of force in three different ñ but

mathe matically equivalent ñ ways, he goes on to say, òPsychologically [these

theories] are different because they are completely unequivalent when you are

trying to guess new laws.ó While Seqsee needs to guess no new laws at the

cutting edge of particle physics , it must still be capable of seeing a sequence in

36

multiple ways, just as people do. The following sequence can be seen as

oscillating between a low point of ò1ó and the peak of ò3ó:

Sequence 38.

It could also be seen in a radically different way that nonetheless predicts

exactly the same continuation:

Sequence 39.

Which of these diverse ways the sequence is perceived in influences how

similar that sequence appears to another. For example, Sequence 38 , more than

Sequence 39 , appears similar to Sequence 40 . Conversely, Sequence 39 , but not

Sequence 38 , appears similar to Sequence 41 .

Sequence 40.

Sequence 41.

Section 2.5 SQUINTING

Consider the following sequence:

Sequence 42.

This can be understood in a mechanical and lifeless fashion as an

interlacing of the three sequences ò1 1 1 éó, ò(2) (2 2) (2 2 2) éó, and ò3 3 3 éó.

37

However, the sequence has a cleaner description that is readily ap parent

to people: the sequence is merely an embellished version of the sequence shown

next. If we òsquintó as we look at Sequence 42 , we can see it as Sequence 43 .

Sequence 43.

Though the embellishments are not the same in successive ovals, their variation

is regular and predictable, thus allowing us to extend the sequence.

People very readily see something as something else. This phenomenon is

so commonplace that it is hard to know what examples to start w ith. People

routinely understand others despite speech errors. For instance, the sounds òa

three -plage letteró is heard as òa three-page letteró with no noticeable effort ñ

in fact, most people will not even hear the extra òló at all. In mathematics,

integ ration is seen as being just an extreme case of summation, linear

transformations are seen as matrix multiplications, and so forth. The sociologist

Ervin Goffman (1986) explores the question of how we understand what is going

on around us, and a core component of his theory involves what he terms

òkeyingó, which is reinterpreting some activity as being something else. The

book is filled with examples of such reinterpretations. For example, when we

watch the play òJulius Caesaró, what we are literally seeing is some actors on

stage, in the United States. However, we can (and unconsciously do) pretend that

we are witnessing a scene in Europe wi th a very different set of people. We may

personally know some of the artists in the play, but from the time the curtain

rises to the time it falls, we are transported into a different world. Hofstadter

(1995) provides p lenty of other examples of òseeing asó. As can be seen from

Sequence 42 , the Seek-Whence domain is rich in examples requiring this ability

to squint.

Other sequences that benefit from squinting include

Sequence 44.

38

which can be seen in a lifeless fashion as 16 terms repeating endlessly, or it can

be seen as a jazzed -up version of Sequence 43 , with some term in each group

being doubled and the position of this doubled item bouncing around in its

size -3 cage, as is shown in Sequence 45 below.

Sequence 45.

Similarly, Sequence 46 can be seen as made up of three interlaced

sequences, as shown in Sequence 47 , but there is a much simpler way of seeing

it: each group is just an ascending group, but the third term from the end of

each group is hidden behind a 0.

Sequence 46.

Sequence 47.

In this same spirit, the following three sequences are related:

Sequence 48.

Sequence 49.

Sequence 50.

The òdirectó way of seeing Sequence 48 is as shown by the ovals, as a

hierarchical structure. However, it can also be seen as an embellished version of

Sequence 49 , with each simple number being replaced by the more ornate

ascending group. By the same token, Sequence 49 is a resplendent version of the

unassuming sequence ò1 2 3 4ó. In that sense, Sequence 48 is just an

embellishment of ò1 2 3 4ó.

39

Section 2.6 GARDEN -PATH SEQUENCES

A ògarden-path sentenceó is a sentence like òThe old man the boat ó,

whose initial words suggest (in fact, almost shove down the throat) an incorrect

interpretation. Subsequent words do not fit this initial interpretation and force

the reader to reassess the meaning of th e earlier part of the sentence. Garden -

path sequences, analogously, contain terms that cry out to be seen in some

(misleading) way. Two such sequences are shown next.

Sequence 51.

Sequence 52.

Sequence 51 is likely hard for the reader to guess, despite the fact that it

has already been seen and discussed in this chapter. Sequence 52 is more

clearly seen as

Sequence 53.

In both cases, a block of identical terms seemed to cry out to be grouped:

the block of three ò1ós in the first and the block of five ò2ós in the second. The

highly tempting grouping in each case leads one astray, making the solution

harder to find, but people nonetheless tend very reliably to form these groups

quickly. Even if, in searching for another w ay of seeing the sequence, they then

tentatively break these groups apart, they find it hard to not form the same

groups again.

In experiments that I conducted with human subjects in Robert

Goldstoneõs laboratory (these are described in Appendix D), the following two

sequences (without the ovals) were among many that were shown to subjects,

and the time required for the subjects to understand each sequence was

40

observed. Sequence 55 took over three times as long as Sequence 54 did 9, for

obvious reasons. Human vision makes it virtually impossible to not notice

identical things when they are neighbors.

Sequence 54.

Sequence 55.

A final example of garden -path sequences involves ò1 2 3ó and ò2 3 4 5 6ó

as misleading group s, as becomes obvious when you mentally erase the ovals.

Sequence 56.

Section 2.7 BLEMISHED SEQUENCES

Sequence 56 admits of another interpretation, in which ò1 2 3ó and

ò2 3 4 5 6ó do not need to be split apart, although this way of seeing it results in

an initial blemish:

Sequence 57.

Sequences with initial blemishes are also part of this domain. Seqsee

should be able to look at a sequence like

Sequence 58.

and see it as òascending, except with the initial misfit of ô7õó.

9 21 out of 25 subjects solved Sequence 54 , taking 5.13 seconds on average when successful. 13 out

of 23 subjects solved Sequence 55, taking 16.87 seconds on average when successful.

41

Section 2.8 SEQSEEõS DEEP CONNECTION WITH COPYCAT

Seqsee would not have been possible had the very rich Copycat and

Metacat projects not already explored many of the ideas used here and

demonstrated that these can actually be made to work. Although many ideas

implemented in Copycat and Metacat were already in place in the early 1980õs, a

working program increases the amount of trust one places in those ideas and

makes ambitious projects conceivable.

In this section, I point out the deep connections between these programs

and Seqsee. Work on Seqsee began afte r Copycat and Metacat had been

completed, and it builds on these programsõ architecture. Curiously, though ,

these programs themselves were born out of an earlier FARG attempt at a

sequence -extrapolating program.

In the first half on the 198 0õs, Hofstadter designed the Seek -Whence

domain and the original ideas for the architecture (Hofstadter, Meredith, and

Clossman, 1982) . Marsha Meredith (1986) worked on a progr am called Seek -

Whence. The task turned out to be quite difficult, and one problem that

Hofstadter repeatedly ran into was the ubiquity of analogies in integer

sequences. Melanie Mitchell (1990, p. 232) describes the role of analogy -making

in solving these sequences:

To find a cohe rent interpretation for the sequence ò1 2 1 1 3 1 1 4 1éó,
one must map hypothesized segments against each other, perceiving
corresponding roles within segments (for example, a reasonable parsing is
ò121-131 -141éó, with the role played by the ò2ó in ò1 2 1ó corresponding to
the role played by the ò3ó in ò1 3 1ó, and so on). What originally gave rise to
the Copycat project was Hofstadterõs desire to further isolate this essential
role of analogy -making in Seek -Whence.

The essential role of analogy -making in Seek-Whence was indeed isolated,

and became the Copycat microdomain. Melanie Mitchell (1990) produced the

program Copycat, and Jim Marshall (1999) extended her work to produce

Metacat. Seqsee comes full circle, and applies some of their ideas to the Seek -

Whence domain.

42

Section 2.9 T HE FUZZY BOUNDARY OF THE DOMAIN

I must confess to having two seemingly contr adictory views about what

to include in the domain. On the one hand, mathematical ideas such as addition ,

multiplication , and primality have been shied away from. On the other, fuzzier

ideas such as mountain (Sequence 59), oscillation (Sequence 60), hiding

(Sequence 61) and doubling (Sequence 62) have been welcomed. This seeming

inconsistency needs an explanation.

Sequence 59.

Sequence 60.

Sequence 61.

Sequence 62.

There are strong reasons to prefer, say, hiding for inclusion within the

Seek-Whence domain over, say, prime number . For one, the concept of hiding

surely arose many millennia before anybody conceived of the notion number ñ

let alone the notion prime number ñ and i n that sense it is a more important

and basic concept. Mathematical terms such as multiplication are fairly recent,

by contrast, and are certainly not among the most typical and frequent of

human concepts. A program such as Superseeker ñ which can recogniz e,

without even blinking, a sequence such as (to pick something at random) the

Möbius transform of the Catalan numbers ñ appears impressive and

superhuman, but it stumbles on Sequence 63 , where even a third grader would

not. Th e ability to extrapolate the humble Sequence 63 ñ with its òanybody can

solve that!ó feel ñ is, it seems to me, far more central to human cognition than

being able to recognize the Möbius transform of the Catalan numbers.

43

Sequence 63.

A second (and related) reason is that although the prime numbers are

important in the world of integer sequences, they are inconsequential in most

others. Hiding is a far more general phenomenon and thus is a central human

concept.

Given the discussion abo ve, it is clear that the boundary of the Seek -

Whence domain is quite fuzzy. We could throw into it, for instance, the notion

of alternation between two things, exemplified in sequences such as:

Sequence 64.

Sequence 65.

Sequence 66.

Indeed, recognizing the presence of the abstra ct notion of alternation in

its countless guises is many orders of magnitude harder than recognizing

primes, as the latter can be achieved in some programming languages in a single

line of code.

Having defined the problem domain, we look next at how well S eqsee

performs on some of these sequences, and we also compare its performance

with human performance.

44

45

Chapter 3 SEQSEEõS PERFORMANCE

The primary reason for promoting the chapter on performance from its

customary location near the end of the dissertation is moti vational. It is an

opportunity for the reader to decide if the remainder of this document is worth

their time. There is no point in dragging the reader through a detailed

description of how Seqsee works if, at the end, the performance is felt to be

mediocr e. I hope, however, that this chapter proves to be a sufficient hook.

In this chapter, I describe sequences that Seqsee can solve and sequences

beyond its reach. I also compare Seqsee õs performance on some sequences with

human performance. Seqsee has a few optional features that can be turned on

or off, resulting in different modes in which Seqsee can be run, and I compare

Seqseeõs performance in various modes. Lastly, I describe the effects that

previously seen sequences have on Seqsee when it is a run wit h the optional

feature òlong -term memory ó turned on.

Let us begin on a positive note by looking at a few sequences that Seqsee

successfully solves. The relati ve difficulty that Seqsee (or a human) has in

understanding different sequences is front and cente r to the current discussion,

and annotating sequences with ovals greatly reduce s such differences. Figure

3.1 below therefore shows the raw form in which the se are presented to Seqsee.

The annotated versions of these sequences are shown on the next page .

Figure 3.1 A few simple sequences that Seqsee solves

46

Figure 3.2 The sequences from Figure 3.1 , now shown with ovals

The claim that Seqsee òsolvesó a particular sequence is blurry, and the

next section therefore descri bes one complete session of Seqsee and specifically

points out what I mean by òsolving ó. Having made that clear, I will then be able

to describe Seqsee õs performance in terms of the percentage of runs where

Seqsee successfully tackles a particular sequen ce, and how long it took to

succeed. òHow long ó is measured in ònumber of codelets run ó, a notion that will

be described in detail in the next chapter . For the time being, the term òtime-

stepsó can safely be substituted for òcodeletsó.

I use percentile chart s to display the time taken by Seqsee on a particular

sequence. A single percentile chart is shown in Figure 3.3 , and describe d shortly

thereafter .

Figure 3.3 A percentile graph

47

The percentile chart consists of 10 vertical lines and a horizontal cut

across them . Each vertical line represents a specific percentile of the time

Seqsee took on some problem. The rightmost vertical line rep resents the 100th

percentile ñ this is the maximum amount of time that Seqsee took when it

successfully solved a problem. In this particular chart, that number is around

20,000 codelets. The line next to it represents the 90th percentile ñ in 90% of

cases, Seqsee took this much time or less, which in this chart is about 15,000

codelet. Thus, in the slowest 10% of its runs, Seqsee took between 15,000 and

20,000 codelets. As we work leftward, the third line from the right represents

the 80th percentile, and so forth, until the leftmost line, which represents the

10th percentile. It can thus be seen that about h alf the time, Seqsee solves this

problem in 3000 codelets or less, but often takes more. On the average, it takes

about 7000 codelets, and this average is represented by the white horizontal

cut.

In comparing Seqsee's performance on two sequences, looking only at the

rightmost vertical line (that is, the maximum time Seqsee took) or only at the

horizontal cut (that is, th e average time) is informative, but t he shape of the

graph tells a richer story.

 The figure below shows Seqsee õs performance on the thre e sequences

from Figure 3.1 .

Figure 3.4 Seqseeõs performance on sequences from Figure 3.1

In this figure, and in all such figures in this chapter, the labels below the

bar s correspond to sequences with the same label in the preceding figure that

displays sequences .

48

Labels above the bar in the left chart are of the form òa/b ó (for example,

ò151/160ó can be seen above the third bar) , and they indicate the number of

t imes that Seqsee was tested on this sequence (160 times) and the number of

times that it succeeded (151 times). Seqsee almost always solves these three

sequences, dipping to a success rate of 94 % only for the third sequence. Failure

on a sequence can have either of two causes: either Seqsee crashed (which it

occasionally does), or the program had not succeeded within 25000 codelets, at

which point the run was terminated.

The right half of Figure 3.4 displays percentile charts showing the

number of codelets that Seqsee req uired on each of the three sequences. It is

apparent that Seqsee does not even break a sweat on the first two sequences ñ

their percentile graphs are nearly flat, except for 10% of the worst runs in each

case, which took noticeably longer but still finished in under 1000 and 4000

codelets respectively . The third sequence makes Seqsee work somewhat harder,

requiring about 4000 time steps on the average. About 10% of the time,

however, Seqsee takes between 15 ,000 and 20,000 time steps (this can be seen

by look ing at the difference in the heights of the two rightmost vertical lines) .

In each of these three sequences, the slowest runs were significantly

slower than most runs. The slowest run took several times longer than the

average run (represented by the hori zontal cut). This pattern of occasionally

taking much longer tha n average will be repeated in many sequences, as the

charts in the rest of this chapter will show. Often, the reason for Seqsee taking

long in a particul ar run is an initial misstep ñ an unfor tunate interpretation of

some part of the sequence ñ from which it does not quickly recover. The

previous chapter gave examples of garden -path sequences where some part of

the sequence cries out for a particular interpretation that happens to be

misleading . The vast majority of sequen ces can be thought of as being garden -

path sequences at least to some extent: that is, locally, in small pockets, short

pieces of the sequence seem to fit together in a way that is not consistent with

the global interpretation. In the third sequence of the figure above, there are

many such small local pockets, some of which are indicated by distracting blue

ovals below:

49

Figure 3.5 Sequence c with distractors

Only the more prominent distractors have been marked: less prominent

groups ñ such as a few ò2 1ós ñ have been left out to avoid clutter.

In general, the greater the number of distracting things, the slower it is

for Seqsee and for people to understand that sequence. As Seqseeõs ability to

perceive patterns has grown over the course of this project, so has the range of

things by which it is distracted. This is the primary reason for hiding some of

Seqseeõs abilities behind optional features: these features, when turned on,

enable Seqsee to see sequences it could not otherwise see, but hinder its

performance on some other sequences. Ideally, such hiding should not be

required. Indeed, many of Seqseeõs features have their own checks and balances,

and are always kept turned on without any issue. Chapter 6, which deals with

categories, sho ws what those checks and balances look like in some cases.

Section 3.5 , on the other hand, describes one particular overzealous feature ñ

òseeing asó, which I also call squinting ñ and discusses some sequences on

which Seqsee p erforms better when that feature is turned off.

Section 3.2 ONE COMPLETE RUN

Let us òwatchó Seqsee run. Over the next six pages, I present screenshots

of successive stages of Seqsee solving Sequence 67 below.

Sequence 67.

50

Figure 3.6 Initial stage: after 0 codelets

This screenshot sh ows the initial state of Seqsee before any processing

has happened. The numeral ò0ó can be seen , near the center at the very top of

the image, representing the number of time steps that have elapsed in the run.

Each time step cor responds to the execution of a single codelet, as will be

described in the next chapter .

The bottom of the image is occupied by the interaction window. This is

where Seqsee asks the human who is interacting with it such questions as òAre

the next three ter ms 3, 4, and 5? ó Naturally, this window is empty at this stage.

Finally, the central part of the figure represents the Workspace . One

might consider this to be a black board on which Seqsee makes notes (and this

imagery is explained further in Appendix A). At this stage, the Workspace

contains just the initial terms that Seqsee was given. This will soon change,

51

however , and the Workspace will fill up as pieces of the sequence and

relationships among them begin to be seen. This will be the main area to watch

in subsequent screenshots .

Figure 3.7 Early stage: some groups seen

The figure above is a snapshot fifty steps into the run. The reader must

keep in mind that this is only how Seqsee looks after fifty steps in this

particular run, and because of the thousands of very small, local decisions that

Seqsee makes probabilistically, on different runs, it follows different trajectories

even if the input is the same.

Seqsee has discovered some structure at this stage ñ small bits of the

sequence have started to make sense. Four yellow arrows are visible. I will

follow Copycat terminology and call these arrows òbonds ó. Bonds represent any

kind of similarity or relatedness that Seqsee has discovered between elements

52

or between groups of elements. Often, a more appropriate term for these bonds

is analogies and this term will also be occasionally used. On a black -and -white

printout, the arrowheads may be hard to discern, and I should mention that all

arrows point to the right.

A couple of blue ovals can be seen, and these denote groups: chunks that

Seqsee can treat as single units. These chunks are not black boxes (i.e., opaque).

Items inside such a box are visible to Seqsee , and it is able to form bonds or

other groups among these. However, once a chunk is formed ñ and until it is

destroyed, as might happen sometimes ñ Seqsee has a probabilistic tendency to

ignore its contents. Thus, the chunk is a translucent box ñ not quite opaque,

and not quite transparent. The discussion of Figure 3.9 (on page 54) provides an

illustra tion.

Figure 3.8 A first question ñ although hasty! ñ is asked

53

The interaction window now contains a question (òIs the next term 5? ó).

The preamble to the question ñ òExtending analogy ó ñ briefly describes why

Seqsee believes that the next term may be a ò5ó.

The question asked by Seqsee may sound myopic ñ it certainly is hasty

ñ but there is some justification to it. Had Seqsee been working on the almost

identical Sequence 68 (below), then the correspond ing question òIs the next

term 4 ?ó ñ would have been exactly the right question to ask.

(As a sidenote, notice how easily we humans toss off such phrases as òthe

corresponding questionó (meaning, of course, òthe analogous questionó),

presuming, taking totally for granted, that other humans will effortlessly and

trivially see, understand, and agree with what we're saying. That is, we are

assuming an analogy -making capacity that is both universal and objectiv e!)

 Since Seqsee does not and should not assume that the initial terms

presented to it were neatly cut off at a group boundary, it is willing to ask for

subsequent terms based only on the last few known terms , and doing this

makes perfect sense, up to a point. It is simply a very local point of view, not

taking into account any overarching global structure. And indeed, at this point,

no global structure has been seen, so there is none to take into account as of

yet . For that reason, one can be less harsh in oneõs judgment of Seqseeõs

question and simply say that it was a bit overeager and perhaps jumped the

gun, although in the light of Sequence 68, perhaps it didnõt.

Sequence 68.

Of course, if Seqsee were less hasty and could hold its horses until more

of the sequence made sense, it would make fewer queries that go t ònoó for an

answer. How to make Seqsee less hasty and yet allow it to extend sequences

such as Sequence 68 is a deep problem ñ indeed, a problem th at is central to

achieving that elusive quality called intelligence ñ that I have not solved

satisfactorily.

54

Figure 3.9 Group of groups formed

At the stage shown in Figure 3.9 , some higher -level groups have been

created. The groups ò(1 2)ó and ò(1 2 3)ó seen earlier are now seen as parts of

larger and higher -level groups ñ ò(6 (1 2))ó and ò(7 (1 2 3)) ó, and th ese groups

themselves, put together, form a still higher -level group. ò(1 2)ó is in fact also a

part of another group: ò((1 2) 7)ó, which reveals that Seqsee is unsure about

where the group ò(1 2)ó belongs, and luckily Seqsee can entertain both rival

possibilities simultaneously until further evidence is available. It does not

believe in each of these two competing groups equally st rongly, however.

Now that this large group whose two members are ò(6 (1 2))ó and

ò(7 (1 2 3))ó has been seen, there is a strong reason , thanks to analogy, to beli eve

55

that the next few elements to the right of the ò(7 (1 2 3))ó will be ò(8 (1 2 3 4))ó,

and indeed Seqsee should ñ and does ñ actively look for these right there. The

five elements ò8ó, ò1ó, ò2ó, ò3ó, and ò4ó are indeed present at that location, but

they have not yet been seen as forming a single hierarchical group ò(8 (1 2 3 4)) ó,

but the analo gy between ò(6 (1 2))ó and ò(7 (1 2 3)) ó suggests the formation of

such an analogous group. Groups exert pressure to look for thei r analogues on

either side. For example, t he ò(1 2 3)ó group in the center exerts some pressure

to look for a ò4ó immediately to its right. However, because it is enclosed in a

bigger group, this pressure is much weaker. This is an illustration of the earlier -

mentioned fact that groups are not black boxes but are translucent ñ the ir

parts can exert some (even if little) influence .

Apart from arrows between elements ñ for example, between the ò6ó and

the ò7ó ñ there are arrows between groups ñ for example, between the ò(1 2 3)ó

group in the center and the ò(1 2 3 4)ó group at the end. Using the term analogy

to describe this arrow connecting two blatantly analogous structures is more in

keeping with the conventional use of the term , but itõs important to point out

that even the much simpler relation between ò6ó and ò7ó is really cut from the

same cloth, and is also an analogy ñ simpl y a humbler one.

56

Figure 3.10 The correct continuation is suggested!

At the stage displayed in Figure 3.10 , Seqsee has posed another question :

òAre the next 6 terms 9, 1, 2, 3, 4, and 5?ó When a question is posed, Seqsee

uses dotted ovals such as those seen above to indicate evidence in support of

the question. Note that Seqseeõs question is not restricted to the next single

term but instead it predicts an entire large group ñ made up of 9, 1, 2, 3, 4,

and 5 ñ as a potential continuation to the pattern .

Though Seqsee considers these three groups as sufficient evidence to ask

the question, other groups that are inconsistent with this view of the sequence

ñ ò((1 2) 7)ó, for example ñ still linger in the background . Seqsee will eventually

destroy these, but only after it is more convinced that it has put its finger on

what the essence of the sequence is. This cleanup will already have happened by

the next and final screenshot.

57

In the picture above , a far larger group encompassing all the known

elements at all levels of structure has been seen, and it should be mentioned

that this group is hierarchical: it has three members (shown by dotted ovals in

the same figure) each of which contains smaller groups as members.

Figure 3.11 And the solution is explain ed.

We have now reached the final screenshot in this series. A few more

terms are visible now, thanks to the humanõs having answered òyesó to the

question in the previous screenshot. The group ò(9 (1 2 3 4 5)) ó was added at

that point.

Since Seqseeõs guess about the next term was correct, it is now more

certain about the nature of the sequence , and it can consequently delete

