SEQSEE A CONCEPT-CENTERED
ARCHITECTURE FOR SEQUENCEPERCEPTION

Abhijit A . Mahabal

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in Computer Science

in the School of Informatics and Computing,
and
the Cognitive Science Program
Indiana University
Bloomington

December 2009

Accepted by the Graduate Faculty, Indiana University, in partial fulfilment of

the requirements for the degree of Doctor of Philosophy.

Dr. Douglas R. Hofstadter
(Principal Adviser)

Dr. Michael Gasser

Dr. Robert Goldstone

Dr. David Leake

Bloomington, Indiana
December 16, 2009.

© 2010
Abhijit Mahabal

ALL RIGHTS RESERVED

Vi

To Ti. Aai and Ti. Dada

Vii

viii

ACKNOWLEDGMENTS

For a very long time now, | have been fascinated by how people think.

Many people have had a lasting influence on how I think about thinking.

The origin of my interest in how the mind works is partly selfish: when |
was sixteen, | desperately and very urgently needed to understand how | solve
math problems. In the summer of 1994, | was one of the six students selected to
represent India at the International Math Olympiad in Hong Kong. The criteria
for selection was a series of tests totaling twenty problems i five problems
each fro m algebra, combinatorics, number theory, and geometry. | solved twelve
of the fifteen problems from algebra, combinatorics, and number theory. And
none fi nada, zero, zilch A from geometry. | had only about a month between

my selection and the actual Olympi ad in Hong Kong in which to raise my game.

My failure at geometry was not caused by lack of motivation or from
being incompetent at math i 1 was only incompetent at geometry. | spent
hundreds of hours trying to get better at geometry and in watching myself solve
problems. (This story has a happy ending. Although | repeated in 1995 my
unheroic feat of getting selected for the team despite a perfect zero in
geometry, | did solve all three geometry problems that | faced at the Olympiad
itself.)

In 1996, | rea d and was inspired by Fluid Concepts and Creative
Analogies . The computer models described in the book were based on deep and
introspective observation of acts of solving problems, of extrapolating
sequences, of perceiving analogies, of designing fonts, an d so forth. Working
with Doug Hofstadter has been very enriching, since, it turned out, the models
were also based on observation of acts of transalation, of writing metrical verse,
of error -making and slips of tongue, of creating ambigrams, of humor, of
mathematical discovery, and much besides. | am grateful to have been around

such a vibrant mind.

I fervently hope that one component of Dougds
on me fi his dogged perseverance in getting to the crux of a matter, in not

letting go unt il he believes that he truly understands an issue.

| also hope that | have learned a thing or two from Doug about clarity in
writing. | am thankful for his many detailed comments on my drafts. (The very

first comment, on page 1, was Okern thiso.)

| thank R obert Goldstone, Mike Gasser, and David Leake for supporting
me throughout graduate school. Mike Gasserdos Grou
Gol dstoneds Percepts and Concepts Lab meetings we
generosity in letting me use his lab to ru n experiments. David Leake was always

supportive and full of encouragement, and | have learned much from him.

| could not have been where | am today without Aai and Dada. Their love,
their honesty and integrity, their love for reading, their open -mindednes s in not
caring if | conformed to the prevalent narrow view of education, their love for
the Marathi tongue, and the steady diet of interesting puzzles that they brought

me up on have shaped who | am.

Ashish A eight years elder to me fi has been a role mode [since | was in
kindergarten. | followed in his footsteps from early on i to atheism; to
guestioning religious beliefs and wondering about their origin; to numismatics;

to astronomy, physics, and math; to birding; and even to Perl.

| could not have finish ed writing without Shwetads hel p, p
nagging me to completion. She also endured my many soliloquies about what |
was doing in Segsee and how great Perl is. We started graduate school together,
and finished together. We were always at nearly the same stages of our graduate
careers, and that was a big help. For both of us, Suhana is an amazing stress

buster. It is impossible to simultaneously watch her smile and be stressed out.

Helga deserves a special thank you. Without her vigilance, CRCC wo uld
truly stop functioning. For the previous three semesters, | have been away in
California, and things would have been much more difficult without her

enthusiastic help.

Of my fellow graduate students, two deserve special mention for many
intense conver sations that | cherish: David Landy and Christopher Honey. Other
FARGonauts and Exo -FARGonauts, past and present, helped with many ideas:
Harry Foundalis, Francisco Lara -Dammer, Eric Nichols, Damian Sullivan, Matt
Rowe, Will York, Michael Roberts, David Mo ser, Alexandre Linhares, Donald Byrd
and Hamid Ekbia. | must single out three ex -FARGonauts for significantly
contributing to the present work through their own dissertations: Marsha
Meredith i who worked on Seek -Whence for her Ph.D. fi and Melanie Mitchell
and James Marshall fi who wrote, respectively, the Copycat and Metacat

programs.

Seqsee is written in Perl, and | have had the good fortune of closely
following the development of the next version of the language fi Perl 6. This
has helped me see the intens e amounts of dedication and care that has been put
into Perl. | thank Larry Wall, Damian Conway, Audrey Tang, chromatic, Patrick
Michaud, and Jonathan Worthington (and countless others) for giving so freely

of themselves.

Many authors have shaped my though ts. A few of these include Douglas
Hofstadter, George Pdlya, Dan Dennett, Donald Norman, Gilles Fauconnier, John
Ellis, Thomas Kuhn, Michael Agar, Erv in Goffman, Larry Wall, Eviatar Zerubavel,

William James, Bernard Baars, George Lakoff, and Roger Schank .

| have been influenced by many other people, a few of whom include, in a
rough chronological order: Vivek Wagh, Prof. Shukla, Subhash Khot, M. Prakash,
S. N. Maheshwari, Amitabha Tripathi, Ashish Raniwala, Rohit Karlupia, Amit
Garg, Arjun Prasad Singh, Ha rshal Pradhan, Siddharth Prakash Jain, people at

Landmark Education, Chirag Jain, and Roshan James.

Thank you all very much!

Xi

Xii

Seqgsee: A Concept -centered Architecture for Sequence Perception

Abhijit A. Mahabal

One of the goals of this project is to des ign and implement a computer program
that can extend integer sequences intelligently, and the project has resulted in the
creation of the program named 0Seqseed (pronounced
range of cognitively interesting sequences, inclu ding the following sequence (Seqsee is
presented the sequence without the groupings indicated by the parentheses):

(D) (MHA2Y) (DHQA2H@A23))

If people are shown this sequence (without the parentheses), they quickly form a

group consisti ng o f the three initial 016s, but then rea

different role in the sequence. Like people, Seqgsee is initially distracted by the three

consecutive 01606s, but gradually figures out that t
andthat the initial 0616 is an ascending group made uf
Architecturally, Seqgqsee i s a descendant of Ho

program Copycat, and adds several novel features that allow it to easily modify behavior
in response to its r ecent perceptions, to form specific e
ascending group is I|ikely to be |l ocated hereb6d, t o
having previously seen similar sequences, to see an entity as something else, and to do
all this without the use of brute force.

Segqsee uses sever al ideas in achieving its goal s: Wi
fringe and the stream of thought; analogies between objects; categorization and labeling
of objects and of situations, and the detection of categories witho ut using brute -force
tests for all sorts of categories; the notion of context which influences and is influenced
by perception; the notion, similar to affordances,
a category -based long -term memory.

The dissertation describes the program and its principles, which are much more
general than integer -sequence extrapolation, and compares its performance with human

performance.

Xiii

Xiv

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Appendix A
Appendix B
Appendix C

Appendix D

BRIEF TABLE OF CONTENTS

Introduction

The Seek-Whence Domain

Segqseeds Per.f.ornmancC.e. ...

Codelets, Codelet Trees, and Pressure

Context and Pressure

CategoriesS IN SEUSEE ...cviieeeei it e e e e e e e e e e e

Long -term Memory

Conclusions and Next Steps

REAAING ...t a e
Restrictions on Groups in Seqgsee
Si and

mo n Kot ow.s.ky.d.s...Wo.r.K..........

Human Performance

XV

.45

201

XVi

DETAILED TABLE OF CONTENTS

Yol g [0 1V [=To [o T 4 1= | (R ix
Brief Table of CONTENTS oii e e s XV
Detailed Table Of CONLENIS ..ot XVii
IS a0 B o U = PPRRRTR XXiii
LISt OFf TADIES ..ot XXVil
Chapter 1 INEFOAUCTION .. 1
SeCtion 1.1 THE GOAISoeiiiiiiiiiiie s 1
Section 1.2 Brute -force vs. Concept -centered Strategiescccccccveeeeeeiiiiiinvn. 3
12,1 SUPEISEEKET ...ttt et e e s e e e e e e e e e e e e s e e nenee e e 4

1.2.2 DEEP BIUE ..ot 8

1.2.3 COPYCAL ..coiiiiieitieie ettt a e e e s 11

Section 1.3 The SUDJOAISc.vviiiiiiieie et 14
1.3.1 EXIENSIDIITY oo 15

1.3.2 GENEraliZatiONcccoeviiiiiieiiiie ettt s 18

1.3.3 SCAlADIINTY ..eeeeeeeiiieie e 20

1.3.4 CONtEXt -SENSITIVILY ..eeeeiiieiiiiiii ettt 21

1.3.5 Visualization to Gain InSight ... 22

1.3.6 Subgoals in TENSIONcccoiiiiiiieeeeee e e 22

Section 1.4 The Structure of This DOCUMENt coooiiiiiiieeiee e 23
Chapter 2 The Seek -Whence DOmain coooiiiiiiiiiiiicci e 25
Section 2.1 What Constitutes a Problem in ~ This Domain?cccceeeennee. 25
Section 2.2 A Sampler Of SEQUENCES uuiiiiiiiieeee e 27
2.2.1 Periodic and Quasi -periodiC SEQUENCESceevvirreeeeeeiiiiiiieeeeeannns 27

2.2.2 ASCENAING GIOUPS .ooeiiiiiiiiiieeeiiiiriee e e st e et e e s e e 30

2.2.3 Descending Groups and Sameness GroupS cccceeeevevereeeennennemmenen 31

2.2.4 Combining fi or Crossing fi SEQUENCES.........cccoviiiiriieeriiirrmmeneeeeens 31
Section 2.3 Pattern dbased SEQUENCEScccvviiiiiiiiiiee e 33
Section 2.4 Multiple Ways 0f SEEING ccoooiiiiiiieeeee e 35
SEeCtion 2.5 SOUINTING .oeiiiiiiiiiieeeiie it e e e as 36
Section 2.6 Garden -path SEQUENCESccuiiiieiiiiiiiee e 39
Section 2.7 Blemished SEQ UENCES..........c.veiiiiiiiiiiiie e 40

Section28 Seqseeds Deep Connec.it.i.on..wi.t.h.4Copycat

Section 2.9 The Fuzzy Boundary of the Domain cccooiiiiiiiieiec s 42
Chapter 3 Seqseeds Per.f.armancC.a. 45
Section 3.2 One Complete RUN ...t 49
Section 3.3 Garden-path SEQUENCESccooeeeiiiiiiiiiiiiieeim e e 60
3.3.2 A Few More Garden -path SEQUENCEScccccvviviiiieieiecesrreeeeeeeeaeee 61
Section 3.4 QuAasi -PeriodiC SEQUENCEScccoiiiriiiieiiiiiieismeeeeeasiriee e e s erreeee e 66
3.4.2 Comparison with Human Performance ccccooveeiiiiiiiec e 67
3.4.3 The Effect of Template Siz€ccovvviiiiiiiii e 68
3.4.4 The Effect of Revealing More Terms Initially —cccccoeeiiiiiiiiiiiiin, 69
Section 3.5 SQUINtiNg, OF SEEING AS ..ooiiiiiieiie e 70
Section 3.6 ReMINAINGS ...ooiiiiiiiiiiieiiiie e 73
Section 3.7 Extending SeQSEe: PriMESccooiiiiiiiiiiiiiiiiii s 76
Section 3.8 Further Comparison with Human Performanceccccuveeeee. 77
3.8.1 Different Types of Relationships Between Ascending Groups ... 79
Section 3.9 Sequences Not Solved by SEQSEeccvvvviieiiriiiiiii e 79
3.9.1 Sequences Outside the DOMAIN cooiviiiieiiiiiiiee e 80
3.9.2 Sequences Based on Unimplemented Concepts cccccceevvivieeeennne 81
3.9.3 Failure Caused by a Deficient Im plementationccccccceveeeeeenn. 82

XVviii

3.9.4 Sequences Rarely SOIVed ... 83

Section 3.10 Parting ThOUGNLS ooiiiiiiiie e 83
Chapter 4 Codelets, Codelet Trees, and Pressure occeeeveeevieiiiiiie e 85
Section 4.1 The Codelet -level DESCIPLON ocoiiiiiiieeeiiieeee e 86
Section 4.2 The COAEraCkc.uiiiiiiiiiiiic e 87
Section4.3 The 0 Cotdredlegd Descriptionccccccvveeeeeiieeeeeiieeeeeeennn. 88
Section44 The 0Pr eleved Desceiphioncccccccvveveeiiiiiiiiieeeeee, 90
441 OProgrammi Ng.Q..Se. .56 v iiiiiiireeeeeamennenns 92
4.4.2 Coderack DemographiCScceeeiiiiiiiiiieeiiiime e 92
443 PIrESSUIE ...t ettt e e e e s et e e e e e e e e s s s e e e s 94
Section 4.5 The GenesSiS Of PrESSUIEcoccueiiiiiiiiiiiie it 95
4.5.1 Analogy as a Source Of PreSSUrecoococciiiieieeeieeecoreieee e e 95
45.2 Top-down Expectation as a Source of Pressure ccoeeeevvvnnen, 97
4.5.3 Reminding as a Source of Pressureccccooovecviiiiieeeev e 98
454 O RE T IPERSSUTE ...ooooiiiiiiiiiie ettt 98
Section 4.6 Parting ThOUGNLS ... 98
Chapter 5 CoNtEXE aNA PrESSUIE .ot 101
Section 5.1 SerendiPityccceeeeeiiiiiiiiee i 103
Section5.2 Copycat 0s-SeQMMNMY €.X..Looccoiiiiieeiiiiieecieeieeeeeeeeee s 104
5.2.1 Context Influences what is Perce ivedccccoveiiiiiiiiiimineciieens 104
5.2.2 Context Influences Responses to the Perception cccovvvveeeeneen. 107
5.2.3 Perceptions and Actions Modify Context —ccccceeeviiiieee i 108
5.2.4 Other Contexts in Copycat and Metacat —ccccceeeeeeeiiiiiiccciiie e 108
Section 5.3 SpecifiCity Of PreSSUIreS oiiiiiiiiiiiee it 110
Section 5.4 Perceptual CONtEXEoooeiiiiiiiieiieee e 116
Section 5.5 Focusing 0N an ODJECE oiviiiiiiiii e 120

5.5.1 One Component of Focusing on an Objec t........occoiiiiiiiiieriiee e 120
5.5.2 The Other Component of Focusing on an Object cccceveeinee 121
Section 5.6 Labels and CONEXEooiiiiiiiiiiieiiiicime e 122
Section 5.7 How the Fringe Generates Specific Pressures ccccccecvveeeeiiinns 126
5.7.1 TR FIrSt STOP eeeiiieiiiieie ettt 127
5.7.2 The SECONA STOPevviiiiiiiiiiieeiiiiiee e e 127
5.7.3 The Third STOP ..ooeiiiiiiiieeiieeee e e e 128
5.7.4 Specificity of Generated Pressuresccooccccveeeeeeiiiiiiiiie e 129
B.7.5 The FOUMh STOD uiiiiiiiiiieieec e sttt e e e e e e e e e 130
Section 5.8 Parting ThoUGhES cuiiiiiiiiiiei e 130
Chapter 6 Categories IN SEOSEE ...iiiiiiiiiiie e 133
Section 6.1 Categories Missing from SEQSEE cccvveveeeeiiiiiiii e, 135
Section 6.2 A Single Category in Depth ... 137
6.2.1 Potential INSTANCES oiiiiiiiiiiie et 137
6.2.2 Analogies Based on This Category ccccceeeririiirreeeiimeesiieeeeeeanes 138
B.2.3 DISCOVEIY .ettiiiiiiiiiieei ettt e e e e e e e e e smae e e e e e aaae s e e e e s e eaneareeeon 143
6.2.4 Gradedness of Category Membership ..o, 151
Section6.3 The Category o0Pr.i.me..Numhb.e.r.b....152
Section 6.4 A Family of Generated Categoriescccccceevriiieieeiiiimiieieeeene 153
Section 6.5 A Category with a Faint Odor —ccooviiiiiie e 157
Section 6.6 Derivative SEQUENCEScooieciiiiiiiiiee e srrrreeee e e e e e e e e e s e s e 159
Section6.7 The Category o0Thi.ng.s..Li.k.e..X.J4a..160
Chapter 7 LONG term MEMOIY ... 165
Section 7.1 A Different Method for Spreading Activation —ccccceeeennee 165
Section 7.2 A Feature Missing from Seqsee: Forgetting coooviviiiiiiiiieneen. 169
Section 7.3 How New Links are Createdccccooeiiiiiiiiiiimeee e 169

XX

Chapter 8
Section 8
8.1.1
8.1.2
Section 8
8.2.1
8.2.2
8.2.3
8.24
Section 8
8.3.1
8.3.2
Section 8

Section 8

Appendix A

Appendix B

Appendix C

Appendix D

Bibliography

Conclusions and Next SIEPS ..o 173

1 A Few DefiCienCieS iN SEQS €€......ccceeveiiiiiiiieeiiiimieeee e 173
Features in Seqsee Sometimes Interfere With Each Other 174
Granularity of Codelets ... ———— 174

.2 A Hard Look at Granularity —ccccceieeiiiiieee e 175
Benefits of a Finer Granularity ..o 176
Roger Schank on Finer Granularity —cccoccoivieiiiiiiiiie e 177
Challenges of Implementing at a Finer Granularity —cccceeeee.... 179
A Codelet for Multi = plication?cccociiieiiieiee e, 181

3 MICIO ~SEOSEEoeieeiiiieee ettt e 182
Relevant KNOWIEdge ... 183
MENTAI SPACES ...t 183

4 Mental Spaces in Extrapolating Sequencescccoccccvvviieeeen. 188

.5 Contributions of ThiS Rese archcccccccvviiiiiiiiiime e 193
=T (o |19 T U S 195
Restrictions on Groups iN SEOSEE .ooeviviiiiiiiiiiiieae v 197
Simon and Kot ov.s.ky.ds..WarL.K.......... 201
Human Performance ... 205

.. 211

XXi

XXii

Figure 1.1
Figure 1.2
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16
Figure 3.17
Figure 3.18
Figure 3.19
Figure 3.20
Figure 3.21
Figure 3.22
Figure 3.23
Figure 3.24

Figure 3.25

LIST OF FIGURES

I ntermedi ate and final stag.es..i.n.unterstandi
Activ ation of three concepts in COpyCat ...ccvveviieeeeiiiicee e 12
A few simple sequences that Seqsee SOIVES ... 45
The sequences from Figu re 3.1, now shown with ovals cccccceeiiiiiiniinnn A6
A percentile graph ..o e DO

Seqseeds performance on

Sequence € With diStracCtors ceeveeiiiiiiiiiieime e ee s 49
Initial stage: after 0 codelets ..o 50
Early stage: SOME groUPS SEEN ..ooiiiiiieiiiiiee ettt ettt e e 51
Afirst question i although hasty! fi isaskedccccooiniiiiiniimicc, 52
Group Of groups fOrMEA ...eeeeeeiii e v e e e aeenenannee 54
The correct continuation is suggested! ... 56
And the solutionis expl ained. ... —— 57
Starting out on the Wrong fOOL ..o 59
Two structurally similar but cognitively dissimilar sequence S it 60
Comparison of Segsee (blue) with human (red) performance 61
A few more garden -path SEQUENCEScccooiiiiieiiiiii i 62
Sequences from Figure 3.15, with ovals ... 63

Seqseeds performance on

Structure of SEQUENCE D...iiiiiiiiiiiii et 64
Part one of Segsee floundering on SEQUENCE @ ..ocvvvevevvvevieieiiiie e 64
Part two of Seqsee floundering on Sequence @cccccecveeeei i 64
Two quasi -periodic sequences that Seqsee SOIVES vvvevvviicciiiiiieeee e 66
Sequences from Figure 3.21, With 0valS ... 66
Performance on sequences from Figure 3.21 ... 67
Three more quasi -periodiC SEQUENCES euiiiiiaiiiiiiiiiiieeeesmiieieeeea e e e sennraeeeeed 67
Sequences from Figure 3.24, now with ovals ... 67

XXxiii

s e.g.u.enc.es..L.47om Fi gur

Figure 3.26
Figure 3.27
Figure 3.28
Figure 3.29
Figure 3.30
Figure 3.31
Figure 3.32
Figure 3.33
Figure 3.34
Figure 3.35
Figure 3.36
Figure 3.37
Figure 3.38
Figure 3.39
Figure 3.40
Figure 3.41
Figure 3.42
Figure 3.43
Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6

Perfo rmance on sequences from Figure 3.24 ... 68
A portion of Figure 3.26, magnified ... 68
The effect of temMPpIate Si ZE&....oceiie i 69
The effect of revealing more terms initially .o, 70
Three sequences helped or hindered by squinting ..o 70
Screenshot: Seqsee SQUINTING ..ovveviiiiiiieee ettt e e e 71
Understanding Sequence a without SQUINGING ...oocvvieeiiiiiee e 71
Sequences from Figure 3.30, with ovals ... 72
Performance on sequences from Figure 3.30 iiiiiiiiiiiie e 72
Effect of having seen the same sequence before ... 74
The effect of having previously seen similar sequencescccocoiiiiiiiiiieenenn, 74
Sequences from Figure 3.36, with ovals ..o 75
Effect of having seen similar sequences ..., 75
Sequences based on the prime numbers ... 76
Sequences from Figure 3.39, with ovals ... 77
Performance on sequences from Figure 3.39 iiiiiiiiiiiiiie e 77
Sequences to show two types of relations between ascending groups ... 79
Performance on sequences in Figure 3.42 oovvevvvvveeevevieeinieirimeeeeeeseseeneeeeeennd 9
A single tree of COARIBLS iiiiiiiie e 89
Probability oft eammpooExn@ensdA.n..o.f..Gr.odBpo

A section of Copycatds Sl i p.net..wh.i.ll@6

The samesectiono f Copycatds Slipnet
What move should black play? ... 112
Anal ogy bet wemrdh @5 &..7.08&. ... 138

Skeleton of the analogy bet.wee.n...0.5.1%

Anal ogy between &49.4&..6.4..and..0.7. ... 140

Skeleton of the analogy bet.we.e.n..o0.4.14

Anal ogy between 0(4 65 76)...1.7.4....a.nd..a.Q#

Anal ogy between 03 2 1 2..364..a.nd..0.4.18

XXV

wh.i.l..el08§ 0l vi ng

solving pr

prob

Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 8.1
Figure C.1
Figure D.1
Figure D.2

Figure D.3

Y ANo11\VZ= L To] o TR 10 1 (o3 1o o KT 147

Activation of oO0lnterlaced 36..whi.l.e.14801 vi ng

Activation of olnterlaced 26 in .Sedilence

Anal ogy between 01 2 3 4..5.4..and..0.1.122 3

Analogy between successive sub -ovals in Sequence 115cccoviunneee 154
Analogy between the two groups shown above ..., 155
Analogy between the starts of the two groups show n aboveccce.... 155
Analogy between successive groups in Sequence 118 ccooiiiiiiiiieeeeenn, 156

Anal ogy between 0(27 3)..065).0..and..0.(.2..3565
Example of grouping from Phaeaco ccccoeiiiiiiiiiii e 161
Copycat 0 S .Sl .l 166

Mapping between o01..26..and...0.1..2..3.4...171

Sequences to demonstrate the effects of long -term memorycccceeennn. 171
Effects of having seen a similar SEQUENCE evviiiiieiiiiiiime e eeeeeeeeeeeeenns 172
Mapping between successive terms in target sequence ccccciieieeenenne 172
Mapping between successive terms of groups #4 through #8 188
My program to solve all the sequences in Simon and Kotovsky (1963) .203
Initial screen for each SEQUENCE iviiiiiiiiiie e 205

Screen shown after clicking..0Cl..ck.2050

Entering a term opens up NEXt DOX ... 206

XXV

C

11

4 5 ¢
Vi ew ¢

XXVi

Table 1.1

Table 4.1

Table 4.2

Table 4.3

Table 4.4

Table 5.1

Table D.1

Table D.2

Table D.3

LIST OF TABLES

Some transforms used by SUPErseek er......cccciviiiieeiii i 5
Description of a run at the codelet level ..o 87
The same part of the run, now shown with creation and wait times 88
The same part of the run, annotated with tree numbers ...l 90
Types of codelets on the Coderack at one pointduringarun 93
Relative worth of various moves in Figure 5.3 ... 113

Summary of subj ect.s.d..per.f.or.manc.e.....207
Performance, CONLINUE ooiiiiiiiiiie e a e e e 208

Performance, CONtINUEA o i e b e e e e e e eee 209

XXVii

XXViii

Chapter 1 INTRODUCTION

Section 1.1 THE GOALS

A few years ago, | stumbled across the notion of a wicked proble m: the
idea was that some problems are inherently hard to define precisely, have
numerous and contradictory requirements, and h
no easy way to determin e if a solution is good enough). The descriptions and
analyses that | read of a few such problems were fascinatingly apt and seemed
particularly compelling, since | was then dealing with a very ill -defined problem
at the software company | was working for. | bring up this concept here because
it enables me to explain what is being attempted in this project, and to describe

the constellation of pressures pulling the project in various directions.

At one level of description, the goal of this project is to de sign and
implement a computer program that can extend integer sequences intelligently,
and the project has in fact resulted in the creation of the program named
0 Se q s(erandunced like the word dsexyd). Such a description of
goal would be a ccurate, but also incomplete to the point of being misleading. It
leaves out the reasons for choosing this problem and for doing this project in
the first place. These reasons 1 to be explained shortly i greatly constrain the
solutions that are deemed acce ptable. The reasons also dictate which aspects of
the problem are central, and which aspects are likely to get the cold shoulder if
time runs out (as it eventually must because of deadlines and such). In the
absence of these very special and strict constra ints and biases, a project whose
goal was 0 a computer program to extend i nte
developed quite differently. Indeed, Section 1.2 explores one such program (a
part of the Online Encyclopedia of Integer Sequ ences), and the goal of that

section is in fact to point out what Segsee should not do.

It would be more to the point to say that the goal of this project is to
explore human cognition by creating a computer model of activities that require
intelligence, a lways making sure to avoid using shortcuts that are available with

computers but are implausible in people. The extrapolation of integer sequences

merely happens to be the domain in which | have been carrying out the
exploration. Chapter 2 demonstrates the richness of (a very restricted subseto f)
the sequence -extrapolation domain and shows how this is an appropriate choice

i indeed, an excellent one i for studying cognition. The restrictions and their

justification are also provided there.

Seen this way as a computer model of intelligence, Seqsee is one more
program in the long procession to have emerged from the Fluid Analogies
Research Group (henceforth, FARG), over the past quarter -century. These
program s* tackle a wide range of activities, including sol ving letter -string
analogy problems (Marshall, 1999; Mitchell, 1990) , solving Bongard problems
(Foundalis, 2006) and designing gridfonts (McGraw, 1995; Rehling, 2001) . The
common thread linking them all is the creation of computer programs that
ideally can perceive and understand complex situations in a human -like way,
and Section 1.2 spells out some of our beliefs about how such a program should
work. Over the years, the models built at FARG have progressed in numerous
ways. Another goal of this project is to build on this progress, and to improve
the shared underlying arch itecture along a variety of dimensions. There are a
number of ways in which the current Segsee program could be made faster,
better, and stronger, and some of these are outlined in Section 1.3. It is this
multitude of realizabl e improvements i not all of which can simultaneously be

achieved fi that gives the project the feel of a wicked problem.

The t evickedpooblem 6 i s attributed t ql9R),whoe | and Web
used it to characterize socially challenging problems. A modern example of such
a problem is O0solving terrorismo. Not i®veryone af
let alone what solving it woul d mean. Any oO0solutiondé would ha
political issues, cultural issues, economic issues (since poverty is an enabler of
desperation and thereby of terrorism), education, and perhaps even climate
change (e.g., the D arfur tragedy was caused partly by an acute water shortage, in

turn caused by changing weather patterns). All these requirements that the

* This list (sorted by the year the work was completed in) includes Jumbo (Hofstadter, 1983) , Seek-
Whence (Meredith, 1986) , Numbo (Defays, 1988) , Copycat (Mitchell, 1990, 1993) , Tabletop (French, 1995) ,
Letter Spirit (In two parts: McGraw, 1995; Rehling, 2001) , Metacat (Marshall, 1999) and Phaeaco (Foundalis,
2006) .

solution of a wicked problem must satisfy push in different, incompatible

directions, and improvements in one area are likely to cause worsening in others

(a cynical example of such a complex interdependency would be the fact that

reducing the number of weapons available might help decrease terrorism, but

stopping the sale of weapons i s nprdblendgséenc o n o mi c ¢
developing software systems are far tamer by comparison, of course, but can

still be confounding. Several writers have described how software development

is a wicked problem (e.g., Conklin and Weil, 1997; DeGrace and Stahl, 1990;

Fitzpatrick, 2003)

The main benefit of casting the development of Seqsee as a wicked
problem is to enable readers to have a better sense of what to expect. At some
spots in this document, readers may feel that the implementation was made
Obarely good e nougthé&distindt fealingsfar leampkp,ethat the
implementation of long -term memory (Chapter 7) can be improved and fine -
tuned. As Seqsee currently stands, many low -lying fruits remain that would
considerably enlarge the set of sequences Seqsee can solve. In ot her words, | am
leaving off at a stage where the relatively low effort -to-gain ratio would favor
continued devel opment . However, in that ratio,
capable of solving more and more sequences. If the chief goal were to build a
program that expertly extrapolates sequences, this would be an unfortunate

time to stop; the chief goal, however, is to explore human cognition.

The project has reached a point where simple improvements, despite
making Seqsee more capable, would not make Se gsee more intelligent . Based on
what | have learned from implementing Seqsee, | have specific ideas about what
would be needed to make it smarter, and | describe them in the last chapter .To
convert these ideas into a working program , it would be necessary to tear the
current Seqsee down and rebuild it in a new way, and that must wait until after
my Ph.D.

Section 1.2 BRUTE-FORCE VS. CONCEPT-CENTERED STRATEGIES

To explain the central tenets of the FARG architecture, we begin by

examining its exact opposite: a computer p rogr am n Supesdekad O (Sloane,

2007a), whose goal is seemingly identical to that of Seqsee but whose approach

is actually profoundly antithetical to it.

1.2.1 SUPERSEEKER
Just to be clear, | must state here that the following discussion is not
intended as a criticism of Superseeker . Super
superficially similar, is actually profoundly different from that of Seqsee, and its

techniques may well be appropriate for that goal.

Superseeker is a part of the Encyclopedia of Integer Sequences (Sloane,
2007b; Sloane and Plouffe, 1995) . That encyclopedia helps scientists or
mathematicians identify sequences that arise in their work, and | discovered
firsthand what a phenomen al resource the encyclopedia is. | was required to
solve a counting problem a f ew months ago. The problem involves a set of 2 n
people: n teachers and n students. The problem: in how many ways can we
choose a subset of these 2 n people that contains an equal number of teachers
and students? Note that we also count the trivial subset co nsisting of zero

teachers and as many students. Let us call this number of ways of choosing

f(n).

For small n, | was easily able to figure out the values of f(n): when nis 1,
2,3,0r4, f(n)is 2,6, 20 or 70, respectively. No pattern was apparent to me, so |
searched for these four terms in the encyclopedia. There | found not just the

formula (which happens to be) and the next 20 terms, but also dozens of

other problems with the same answer (for example, the number of non -
decreasing sequ ences of length n made up of integers from0to n). | also found
many references to properties of this sequence. This was exactly what | needed

at that time.

With over 100,000 sequences, including our f (n), the encyclopedia is an
astounding repository . But consider now the situation if | had been working on a
slightly different problem. The new problem: count only those subsets with at
least one person in them. Let us call the answer to this modified problem g (n).
The first four values of g (n)are 1, 5, 19, and 69 fi that is, one less than the

corresponding value of f (n). Now we are out of luck: the encyclopedia contains

4

no entry for g (n). This is where Superseeker enters the picture. To use
Superseeker, an email must be sentto superseeker@research.att.com , containing
a |ine such as o0lookup 1 5 19 696. After

Superseeker replies to the email with possible interpretations of the terms.

In order to make sense of the input fi g (n), in this case i Superseeker
applies 115 distinct transforms to it in order to obtain new sequences that it
then looks up in the encyclopedia 2 (Sloane, 2007a) . A few of these transforms
are shown belo w. For each transform, | describe how the transformed sequence
h (n) is obtained from the original sequence, and what that transformed version
of g (n)is. | have included esoteric transformations like Mobius Inverse to show
that Superseeker casts a wide net . Readers may look up M®obius Inverse if they

wish, but the concept is not crucial to this argument.

Table 1.1 Some transforms used by Superseeker

Number Name Definition Transformed g(n)

T040 Add 1 NE =" + 1 2,6, 20,70

TO41 Subtract 1 Qe ="Q¢ 1 0,4, 18,68

TO18 Take differences ME ="Qe+1 Q¢ 4,14,50

T111 Mabius inverse 08 = Q0 o 1,4,18,64

Qe Q
T082 Subtract factorial e = Q¢ ¢! 0,3,13,45
TO10 Divide by factorial ¢ = @ 1, 2.5, 3.166, 2.45
¢!
Fort he sequence under consideration, transf

produces a sequence that is in the encyclopedia, thus enabling Superseeker to
extend the original sequence (by subtracting 1 from each subsequent term of
0 26 , 20, 706, whioh it can easily d

Superseekerds strategy is nothing |ike
blindly go through a list of things to try, one by one. In computer science lingo,
a strategy | i ke Supleutesfereekle whatsfollows, | willardfinee d

the notion o f brute force, and will point out that whether or not a strategy is

’It also attempts to fit a polynomial to the data and to apply other heavy -duty tools, such a s trying to
represent various types of generating functions as hypergeometric series. See Sloane (2007a) for the full list.

5

mailto:superseeker@research.att.com

considered to be brute -force admits all shades of gray. Both Superseeker and

people lie near extremes of the brute -force spectrum, but at opposite ends.

The transform 0di vunderscorbsythe f lutetfarce usad by
Superseeker. Let us ask ourselves if a person would try this transform on this
particul ar sequence (i .e., on 01, 5,

generated on applying the transform does not even consist of integ ers, and

would by definition be missing from the Encyclopedia of Integer Sequences.

Thus, in hindsight, the transform had no chance whatsoever of success. People

have the foresight to avoid the waste of time of applying this particular
transform to this particular sequence, and it is worth asking what the nature of
that foresight is and how it might be captured in a computer program. This is a

central question confronted by the work presented here, and we will encounter

it repeatedly.

To be sure, faditwirdel By i s occasional

19,

Iy

reduces the sequence 01, 4 , 3 1o8the fa® 6impler6 0 O ,

012,3,4,56,76. Still, seqguences on which
beneficial tend to have certain properties, and if these are not satisfied by the
given sequence, it is unlikely to yield promising fruit under this transform. All
sequences likely to benefit from this transform grow very rapidly, and, with the
possible exception of the first term, all of their terms ar e even. People notice
such shortcuts readily, once they gain familiarity with this type of problem. A

person would never try this transform without having a decent reason (however

vague) to believe a priori that it would succeed.

The non human quality of Su per seeker 6s technique
takes are unmotivated. Superseeker has no sense that one transform appears to
have a better chance of success than another does, and its de cision to apply the
odi vi dactbyrifal 6 transf or m i sfultahdeitrisenbtoaally
even a decision, since, regardless of what the problem is, Superseeker always

applies this transform).

® This is the number of permutations of the positive int egers in whic h n is the largest element that is
not fixed .

t hi

not

696) .

useful

S

4320,

tran:

t hat

pur po

Yet, from another point of view, the transforms used by Superseeker are
purposeful: smart people wh o knew what they were doin g carefully chose these
transforms. For the sequences that Superseeker is likely to encounter i thatis,
sequences arising in science or math i this set of transforms is well -suited .
Every single transf oarsenalimnan Euefleatrcilsoee k atreass
for so me of these sequences. The non human quality is that Superseeker does

not carefully chooset he weapon to use; it always tries each and every weapon.

oWeapondé and 0 ar s e nwotd®) and soel wil swiitah ftouthe
more neutral terms 0t b6 and o0t ool set 6. Il s it wvegendt hwhi | e
time considering which tool (s) to use? In many cases, the effort required to
choose wisely (both machine effort to make that choice, and human effort to
write the program to enable such a choice) fa r outweighs the saving achieved by
using only a few tools instead of using all available tools one by one.
Implementing a brute -force solution is typically much simpler, and as
computers have become quicker, the cost of using more tools than necessary

has decreased, making brute force a good choice for many situations.

As the number of tools in the toolset becomes larger, however, brute
force becomes less appealing. In any case, when one is attempting to create a
program that mimics human thinking, it is crucial to avoid brute force. In order
to suggest a way for choosing the right tool, consider what set of transforms is
appropriate for three Superseeker -like programs that differ only in the

sequences that they are required to solve, as described below:

1. The input sequences are those that the real Superseeker is likely to

encounter.

2. The input sequences are a subset of the above: only strictly

increasing sequences will be given to the program.

3. The input sequences are a subset of the above: only strictly
increa sing sequences will be given as input, with the added

restriction that no term is more than double the preceding term.

The set of transforms that best fit each of these situations is different.
Many transforms that make sense for the unrestricted domain wi Il be pointless
in the restricted domain. Conversely, some transforms that are sensible in the
restricted domain help only a minu scule fraction of the unrestricted domain ,
and for that reason, these transforms will not make it to the list of the most

usefu | sequences for the larger domain

Given a sequence, if the program is able to identify that it is of a certain
type (say, it notices that the sequence is strictly increasing), tools with a better
chance of success can be chosen. Such categorizing (or lab eling) is automatic in
people, and it is the principal method | am suggesting to get out of the brute -

force thicket.

People i unlike the case of Superseeker, which must choose from only a
few dozen possible transforms fi have a seemingly limitless variety o f choices
in deciding how to respond to a situation, or even whether or not to respond at
all to a situation. A situation may appear to us to be a win -win situation, or to
pose an imminent danger, or to be hilarious, or to be infuriating; each such
(possib ly subconscious) categorization will change our set of possible responses
i narrowing it in some ways by ruling out some responses, but also widening it

in other ways by revealing otherwise hidden possibilities.

Responding to a win -win situation with a coo perative gesture, or to a
dangerous situation by fleeing to safety, can be said to be purposeful.
Superseekerds choices of transforms are purposef
sequences it is likely to come across, they are good choices. This
purposefulnes s, however, is shallow A it lacks sensitivity to different types of
sequences and does not produce a response tailored to the sequence being

considered.

1.2.2 DEeepBLUE
At one extreme of the brute -force spectrum are the purely brute -force
systems, and at the oth er extreme, we find its converse (human -force?). So far,

we have been talking about a point near the former end, but now, in the

remainder of this section, we will move away from pure brute force and toward

the other extreme.

The system we are about to consider involves the world of chess -playing,

and follows a hybrid strategy, partly brute -force. If we were to imagine an

analogous program in the domain of Superseeker, it would do roughly this:
given an input sequence, it would check which of 8000 different labels are
appropriate for it. Labels may include increasing sequence , sequence consisting

only of primes , sequence consisting onlagd so forth.0 0 6 s

Depending on which labels were found to be appropriate, only a subset of the
possible trans forms would need to be tried. The | abeling process is purely
brute -force, methodically trying every label, but this allows the program to be
more purposeful when applying the few transforms consistent with the labels,

and avoids having to throw everything but the kitchen sink at the sequence.
Being brute -force in one way allows chess programs to be purposeful in other

ways.

The hybrid of brute force and purposefulness that I'm referring to is

Deep Blue, the first chess program to beat the reigning world cha mpion
(Campbell, Hoane, and Hsu, 2002) . When Deep Blue decided on its next move,
like most other game -playing programs, it used the classic look -ahead
technique. That is, it considered the possible next moves, responses to these
moves, responses to responses to these moves, and so forth. There could be
many possible moves, many responses to each move, and so on. This forms a

tree -like structure, called the game tree . Each node of this tree is a possible

board position that can be reached from the current position.

How far into the tree Deep Blue looked in order to decide its move s
called the depth of the search. A purely brute -force approach would search all
branches equally deeply (i.e., would search all nhodes of the tree up to a certain
depth.) But this brute -force method would not be strong enough to beat the
reigning human champion, even for Deep Blue (which reached the speed of
evaluating 300 million board positions per second during its match against
Kasparov) as it would be able to look only a few steps ahead. What Deep Blue in

fact used, instead, is a technique known as selective extension of the game tree.

9

an

For each node, a decision is made whether nodes beyond it should be explored.
For making this decision , Deep Blue used a sophisticated method devised by
Claude Shannon (1950) fi the program estimate d the quiescence (or stability) of

a given board position to dete rmine how beneficial looking further ahead would

be, and it deeply explored only those pathways where it was not clear that one

player had a decisive advantage

I wish to point out that because of their use of selective extension, chess
programs are not purely brute -force: when they explore a trajectory through
potential future moves, it is because there is reason to believe that such
exploration is helpful or required. If in some position one player or the other
has a substantial advantage, further explora tion from that position is not
required. The program needs to look deeper only in situations that could turn

out either way.

How does a chess program estimate which player has, so to speak, the
upper hand? As | will soon elaborate, the function that does such estimation

called the evaluation function fi make s use of categories (or labels).

Deep Blue runs on specialized hardware Kknown
chipbé. T tooks forc 8,00 distinct patterns of arrangements of pieces on
the board, ranging fr om simple (e.g., the number of enemy rooks on the board)
to complex (e.g., enemy minor pieces guarding the 7 " and 8" ranks of the file
that our rook is on). The evaluation function is in fact an 8000 -parameter
function, and was almost entirely hand -tuned by chess experts (Campbell, et al.,
2002) . Many of these patterns are obvious to any expert (human) chess player,
and have been present in chess literature for centuries, going back at least to
the sixteenth century, at which time the first (unofficial) world chess champion
Ruy Loépez de Sigura had alrea dy studied several chess openings (de Sigura,
1561)°. Deep Bl ueds ev al thesefoie oan adproximatton o of whats

chess experts have long known to be some of the most relevant concepts.

“As an aside, fans of the author Pierre Menard may enjoy his translation of this chess masterpiece
into French (see, for instance, Borges, 1962) .

10

While the ability to estimate who has the advantage allows Deep Blue to
avoid being a pure ly brute -force program , as we have just seen, this ability itself
is based almost purely on brute -force. The presence and/or strength of each of
the 8000 patterns is always checked, in all situations. O f course, this contrasts

radically with how human experts evaluate a board.

1.2.3 CoOPYCAT
Let us take one final sample from the brute -force spectrum, moving
further away from pure br ute force to briefly consider a pair of programs in
which the a ct of labeling is not brute -force. Although we will be talking about
two different programs i Mel ani e Mi tchell 8ds Copycat and Ji
fi for our purposes , we can treat these as one. | bring Me tacat into the

discussion because | have access to a running version of Metacat fi but not of

Copycat fi and all screenshots will therefore be from Metacat. A full description

of these programs can be found in (Marshall, 1999; Mitchell, 1990)

Copycatds t ask issingtamlogy probbleras slickeds:t e r

Copycat Problem 1. If abc changes to abd, what does iijjkk change to?
Copycat Problem 2. If abc changesto cba, what does iijjkk change to?
Copycat Problem 3. If abc changes to abd, what does kji change to?
Let us focus on how the structure of diijjkk 6 is understood by Copycat
while solving problem 1 from the list above. For Oiijjkk 6 to be understood as
analogous to 0abcé, the substring ii must be seen as a s ingle group °, or more

specifically, as a sameness group since both its elements are identical.

Furthermore, diijjkk 6 should be seen as a successor group. Copycat successfully

labels all three pairs of letters (dii 6, §jj 6, and okk 6) as sameness groups, but this

process is not instantaneous. Figure 1.1 is a screenshot that shows an

intermediate sta ge (Subfigure a) and the final stage (S ubfi gure b) in Cop:

understanding of this string. Notice how in the intermediate stage the t woid ®

have been seen as a single group. Th&kdédotted
® This is not absolutely true. Copycat sometimes produces an answer to Problem 1 that does not

require ii to be seen as a group A Giijjkl 6. This answer i gnor eabc&ahnediijjskt 6, madyur es o f 0

changing the Il ast |l etter to its successabcdail Hijkid Gaerrey ssthrailnl goswd .an a

11

indicates that Copycat is considering grouping them into a chunk but has not

done so yet.

.. i
ek | |EIE

€Y (b)

Figure 1.1 Intermediate and final stagesin under st aijgki dvg 0

2

.
e
~

At stage (a) above, there is reason to believe that sameness groups are
present in and relevant to understanding the string, as one such group has
already been seenio namel ya, stelteoend one | ooks prom
okk 6) . This set of 0 hi nt s gcat pouekpdicitypseagch $our e on Cop

sameness groups, and this leads to finally seeing all three sameness groups.

What is not shown in the figure is that Copycat was simultaneously trying
to make senabed oifn tthtee 0i nput, | eadingorship to believ
was relevant in the problem, and therefore it also explicitly searched for
successor s, i n the eijkk é eaes nag Itehregeenstuacce sOSoOr gr ol

represented by the next -to-largest rectangle in Subfigure b).

Copycat keeps track of how r elevant various concepts appear in a
component called the Slipnet. The screenshot in Figure 1.2 shows how relevant
Copycat considers three concepts (predecessor, successor, and sameness) at
stage (a). The bigger a circle is, th e more relevant that concept is considered to
be at that moment, and the likelier Copycat is to take action based on that

relevance (e.g., to search for sameness groups).

pred suce same
Figure 1.2 Activation of three concepts in Copycat

12

Copycatds wuse of conc e lcitthan tha of Deep Bluemor e exp
As with Deep Blue, concepts allow Copycat to follow promising paths. Unlike
the case for Deep Blue, the number of paths Copycat might follow is not well -
defined or even bounded, and the use of concepts is therefore indispensab le.
Concepts allow Copycat to produce insightful answers, as occasionally happens

when it is given the following problem:
Copycat Problem 4. If abc changes to abd, what does mrrjjj change to?

Copycat al most aacbwagsassesesceéssor group, b ut
seemrrjpé as a successor gr ou fengtla sncreasng llas wi t h
opposed to the letter category i n t he cabcle ,ofana@ on such occa

produces t hmrjjjpdmswer 0

It is our belief that concepts and their activation must be deeply
understood if we are to make headway in cognitive science. | quote a paragraph
from Fluid Concepts and Creative Analogies (Hofstadter and the Members of the
Fluid Analogies Research Group, 1995, p. 466)

We believe that if Al and cognitive science are to clarify the
workings of the human mind, and partic ularly the human mind as a
creative engine, they must pay far more explicit attention to the
level of concepts and analogies, and move away from the magical
hope that such phenomena, with their extraordinary richness and
complexity, will simply emerge some how all by themselves, as a
result of training networks of artificial neurons. Of course, neural
hardware underpins all conceptual phenomena, but then again, so
does elementary -particle physics. The real question is: What kinds
of intermediate dlevel struct ures and mechanisms, located
somewhere between quarks and the cortex, do the work that
counts?

| will have the opportunity to argue (in Chapter 5) that Seqsee is a tiny bit
further away from the brute -force end of the spectrum than Copycat or Metacat
are i its actions are more specific, and in that sense, more purposeful . owill
show how concepts help Seqsee keep focused, and indeed help it decide what to

focus on.

13

Section 1.3 THE SUBGOALS

Seqsee is an attempt to build on lessons learned and progress made in
the devel opment of earlier FARG models. Like Seqsee, each of the earlier
programs represents about half a dozen person -years of work, and often more.
All of these programs have built on their predecessors, sometimes directly, by
sharing the domain and the code (for example, Metacat (Marshall, 1999) extends
Copycat (Mitchell, 1990)), but usually less directly, by just borrowing ideas a nd

architectural insights (but not the code or the problem domain).

A careful analysis of how FARG models have progressed over the years
reveals a few definite trends. This section describes some of these trends, and
thus catalogs some of the aspects in wh ich successive FARG projects have made
progress. | also discuss the areas in which | hoped to take Segsee further than
earlier projects. | believe | have made substantial progress in some areas, little
or none in others, and have slid back in an area or tw 0. Additionally, | describe
one particular improvement that has not yet been realized, but that in some
form or other has been wishful thinking routinely expressed on our research
groupds mailing |ist: a generic FARG datebrary that

future implementations targeting other domains.

A few remarks are in order regarding the grouping of potential
improvements under the similar -sounding headings of extensibility , scalability,
and generalization . These are interdependent, and the follow ing split is

necessarily somewhat artificial.

Extensibility r ef er s t o the ease with which Segseeds
sequences can be augmented. It is a convenient fiction to think of Seqsee as

consisting of two layers fi although the separation betwe en the two is not clean

A and to call these the ohardwared6 | ayer and the
both are of course implemented in software. Naming the layers in this way

all ows me to use the phrase oOprogr aminitheg Seqseebd

proc ess of programming Segsee does not include making changes to the

°In order to be accurate , | must point out that Marshall translated the Copycat code from Lisp to
Scheme before extending it. However, these | anguages are close eno
same codedé is only a small fib.

14

underlying architecture. We can think of the lower layer as a virtual machine,
and of the upper layer as the software running on this machine. By the word
oextensibilityoé, augmeeannt itnhge S edgesae eodfs abi | ity b

its software layer.

How comfortably Seqsee can deal with inputs containing hundreds of
terms or with situations involving hundreds of categories is the concern called
scalability . In such situations, Seqsee ma y be unable to cope for two types of
reasons. First, Seqsee may be using up too many resources (for instance,

memory and time), and a quicker computer and a greater amount of RAM would

solve the problem. Though | have spent a significant amount of time in making
sure that Seqgsee is not very slow, that is not my main concern here. | worry
more about the s econd source of non -scalabilty: Seqseeds inability to

thousands of categories or thousands of groups may be caused by deeper
shortcomings of its architecture, resulting from an incorrect understanding or a

faulty implementation of the underlying cognitive processes. If Seqsee had a
repertoire consisting of thousands of categories, for instance, it might happen

that it would pay attention to hundred s of these instead of being able to zoom

in on just a few that seemed relevant to a given problem, and for that reason it

would be unable to extrapolate effectively. The same spreading -attention -too -
thin effect can potentially occur when thousands of group s are present. Just
throwing a hundred d× dfaster computer at this deficiency would not make it

go away, and therefore, unless it is fixed, this issue would limit Segsee to having

only a small set of categories. The subsection scalability considers this issue.

Finally, the subsection on generalization looks at how well suited
Seqseeds techniques are for other domains. As

primarily referring to modifications at the software level.
1.3.1 EXTENSIBILITY

1.3.1.1 EXTENSIBLE ABILITY TO SEE COMPLEX STRUCTURES
The ability of FARG programs to see complex structures has increased
over ti me. Copycat was unalaidbbccd oc seled hlmev d heaen &

into theaabbcadd th.g 16n f act , Mitchell gave Copyca

15

describe c hanges between strings of equal lengths where only one letter had

changed. Metacat was able to perceive far more general changes, including

between the two strings just mentioned. It could also see changes involving

swapping letter -categories, as inthech ange f aabam6 Ot kbab®o . Seqgsee

takes this further, and it can successfully extrapolate Sequence 1, for example.

A better way of identifying potentially analogous structures can be
credited for this increased ability , as | will describe in Chapter 5. This ability is
extensible A for example, adding to Seqsee a rudimentary notion of the prime
numbers (to identify primes and to be able to say if two numbers are successive
primes) allows it to see, with no extra work, a large number of sequences based
on primes. Chapter 6 contains a careful discussion of such an addition to

Seqsee.

It should be pointed out that sequence -extrapolation challenges are
similar to Copycat challenges. Sequence 1, for instance, is like the following set

of Copycat problems:

Copycat Problem 5. If aab changes to aababc, what does aababc change to?
Copycat Problem 6. What does a change to?
Copycat Problem 7. What does aababcabcd change to?

Section 2.8 explores the deep connections fi including historical fi

between the Seq see and Copycat domains.

Seqseeds ability to see complex structures is
is possible to add categories fi without having to modify the underlying

architecture @ that allow Segsee to see more types of structures than it could

before. We will see examples of some such extensions in Chapter 6.

1.3.1.2 ABILITY TO DISCOVER LONG-DISTANCE RELATIONS
Section 5.7.4 shows how Segseeds mechanism o

allows it to see relations between objects far from each other (Copycat and

16

Metacat are unable to do this, and for that reason they cannot solve problems

such as Copycat Problem 8).

If abpgabcpgr changes to abpqgabcpgrabcd , what does
Copycat Problem 8.
ewefwx change to?

This ability is needed if Seqgsee is to understand, f or example, Sequence 2.

This ability is also extensible in that addition of categories allows Seqsee
to draw analogies between objects that it otherwise could not, and hence it can

create a greater variety of relations.

1.3.1.3 REMEMBERING BETWEEN RUNS

Seqgsee can remember aspects of solutions and relations that it has seen.
This helps it in subsequent runs to see similar sequences more quickly
(Chapter 7). Copycat (1990) did not have such a mechanism, but Metacat (1999)
had the beginnings of one: although it could not make use of what it
remembered to help it solve a pro blem, it could nonetheless point out at the
end of a run that an earlier problem was similar to the one it just solved.
Phaeaco (2006) has the most functional permanent memory of all FARG models

so far.

There are psychologically interesting i ssues here. The fact of having been
frequently exposed to Sequence 1 should enable Seqgsee to understand Sequence
3 more quickly, as it is Oexactly the same se

dexactlyéd

Sequence 3.

1.3.1.4 EASE OF ADDING NEW GOALS
Apart from extrapolating sequences, we may wish Seqsee to describe

sequences and to make variations on a given sequence. Ideally, it should be easy

17

to add novel goals of this sort. Metacat, for instance, can run in two mode S it
can either find an answer to a letter -string analogy problem, or, in case it is told
the answer, it can attempt to justify it. Seqsee has unfortunately made no

progress in this area.
1.3.2 GENERALIZATION

1.3.2.1 SEPARATION OF ARCHITECTURE AND DOMAIN

As described i n Section 1.1, Seqsee is intended to model key mechanisms
of human cognition, not just some curious, highly specialized ability to perceive
integer sequences. If the implementation is very tightly tied with and optimized
for extending sequences, changing S eqgsee to work in another domain would
involve an impossible amount of work. It would really amount to writing a new
program from scratch. Consequently, | have attempted to design Seqgsee so that
most of its components do not care about the domain. The Coder ack (Chapter
4), the stream of thought (Chapter 5), several visualization tools (Chapters 3 and
6), and (for the most part) long -term memory (Chapter 7) would work essentially
unchanged in any domain. Other components, however, such as the Workspace
or ind ividual codelets, are tied to the domain, and would need to be redone if

one were trying to retarget Segsee.

A goal of this separation is to create a reusable library that would allow
rapid creation of FARG implementations. The current work does not go far
enough in this direction fi no reusable library has been produced fi but at
some point in the future, | plan to tear down and rebuild Segsee to incorporate
the lessons | have learned in this project. When | do so, | will attempt to make a
yet cleaner separa tion between the domain -specific aspects and the domain -

independent aspects of the program.

1.3.2.2 ABILITY TO REPRESENT ARBITRARY CATEGORIES
People routinely create categories that constitute big challenges to model
faithfully (i.e., without cognitively implausib le shortcuts). Consider the category
Einstein, which, at first blush, seems to contain one individual (or perhaps also
includes other people named B&Biistetn&tesndput Boel yt he

used to creatively describe other individuals, including Ch arles Hartshorne (who

18

has been c &ihstem df rebigiols ¢hought 6) , Dr . Magnus Hirschf
Einstein of sex ¢) , amnad Br e x |E;stein (ofonanotechnology 6) . We al so

manufacture categories on the fly (e.qg., ot hi
Lakoff (1987) di scusses how even an everyday category
of nuances and in extreme cases splits into several related categories such as

biological mother , stepmother , surrogate mother , adoptive mothe r, foster mother ,

and donor mother . I s Seqseeds way of using categories

such diversity and complexity?

Before answering this question, | need to draw a distinction among three
types of categories. First, there are categories tha t the current incarnation of
Seqsee already has when the progm@mcatagadrsi es
Second, there are categories that the current incarnation can generate on the fly
i f neededgephéaatedod categories). T b ithatda, t her e

programmer can add to Seqsee with a small amount of effort.

The question ols Seqseeds way —rich enough
guestions: OAre the cur r eninorcaatd eggneratederich (whet h

enough?d6é6, and o0Can dedpdceaenesgbdbyi?eds be

It might be argued that this third set of categories is sufficiently vaguely
described to give me enough wiggle room to claim fantastic things as being
easily realizable with just a little more effort than | have bothered to put in. |
will t herefore try to be a bit more precise about what adding a category to
Seqgsee requires of the programmer, and more fundamentally, | will try to
di scuss the shades of gray in the notion of S

categoryo.

All this we will discus s in Chapter 6. For now, | will provide two examples
of built -in categories in Seqsee: one shallow, the other deeper. First, we look at
the category oOprime numberdé, which was recent
not a part of SeqseedsribeddnChapter 2), buhthey Wwerei s desc
added nonetheless, in order to test certain aspects of the implementation, and
they are turned off by default. Seqsee has a switch that can be flipped to imbue

it with a rudimentary owor ki ng ektheoswitcekldged of

19

http://www.harvardsquarelibrary.org/unitarians/hartshorne.html
http://us.imdb.com/title/tt0161542
http://cyborgdemocracy.net/2003/12/navrozov-declares-drexler-einstein-of.html

been flipped on, however, Seqseeds under standin
shallow @A as opposed to completely nonexistent before. Seqgsee has no

conception of division, of quotients and remainders, or of factors, let alone of

counting a numbe r 6 s number of factors. It does know en
however, to allow it not j ust to see the <canoni

successfully extend sequences such as:

Sequence 5. 1 2 3X1 2 3 4 51 2 3 4 5 6 7

Now that | have described the shallowness of a particular category in
Seqgsee i and provided an example of how having even a shallow category can
help in extending moderately complex sequences, thereby giving an illusion of
understanding fi | mu st point out t hat Seqseeds under s
categories as ascending group is far f rom completely hollow. Seqsee has the

ability to recognize instances of this concept , to see relations between instances,

to create specific subcategories on the fly (e.g., ascending group starting at 2),
even to oOosmell 6 the <cat egngthgpreaence af sddessatrance (by n
relations and guessing that successor groups may well exist and be relevant),

and to create more complex categories based on this category (an example of

which can be seen in the outer ovals of Sequence 1).

One of my main goals was to give Segsee the ability to add categories
easily. Copycat and Metacat had a fixed list of categories, whereas Seqgsee
creates categories on the fly and is also easily extensible. Phaeaco also has an

extensible category s ystem.

1.3.3 SCALABILITY
People have the ability to deal with hundreds of thousands of categories,
if not millions. Consequently, being able to deal with a large number of

categories was an important goal of Seqsee.

20

1.3.3.1 ABILITY TO COPE WITH LARGE INPUTS

Seqgsee seems to have little trouble in dealing with sequences even if
hundreds of initial terms are given. If a greater number of initial terms are
revealed, in fact, Seqsee is a bit quicker in reaching the solution (Sections 3.2

and 3.3 contain examples of this pheno menon).

There are cases, however, when being given a large number of terms
confuses Seqsee: such situations include cases where parts of the sequence
seem to fit together nicely, but do so misleadingly. We will see examples of such

situations also in Chapt er 3.

1.3.3.2 ABILITY TO COPE WITH LARGE NUMBERS OF CATEGORIES
As the number of active categories grows (because Segsee comes to
believe that certain categories are relevant to understanding the current
sequence, or because optional features in Seqsee are turned o n that activate
mor e categories), Seqgseeds attention can get
performance can thus deteriorate. Chapter 8 contains specific ideas that hold

promise for improving the situation.

I must hasten to add that although in the presence of a large number of
categori es, Seqseeds perfor mance occasionallly
usually caused by categories whose presence Seqsee cannot "smell" easily fi
that is, Seqsee does not have good intuitions about what situations these
categories are relevant in, and so it needlessly pays attention to these. Most

categories in the core of Seqsee do not suffer from this problem.

1.3.4 CONTEXT -SENSITIVITY
All of Chapter 5 is dedicated to the exploration of context -sensitivity in
Seqgsee and its predecessor s. To avoid repeating myself, here | will present just
two concrete examples of how, over the decades, FARG programs have become

increasingly sensitive to context.

First, Copycat and Metacat can detect the importance of successor groups
in a problem and ca n adapt their actions accordingly. They do not, however,

become sensitive to the presence of Osuccessor

21

many of these are discovered in the problem. Seqsee is more sensitive to this

finer sort of distinction.

Second, many o f Met acat 6s advances over Copycat di
degree of context -sensitivity. For example, the introduction of the architectural
component Thematic Spaces allowed Metacat to realize in a particular problem
that successor groups are relevant in some of the strings in a given problem but
not in all of them. When Copycat thinks of successor groups as important, it
seeks such groups in all strings. The existence of Thematic Spaces allows
Metacat to be more focused i it can search for successor group s in those
strings where there is a greater reason to suspect their presence. The additional
component of Metacat called the Temporal Trace, likewise, allows Metacat to be
more sensitive than Copycat is to its own processing, as it can detect when it
gets stuck in a rut, whereas Copycat or Seqsee are never aware of going over the

same territory time and time again.

Seqsee is sensitive to a wider range of contexts, | think, than either

Copycat or Metacat is, as | will attempt to show in Chapter 5.

1.3.5 VISUALIZAT ION TO GAIN INSIGHT

If Segsee is to succeed as a tool for exploring cognition by simulating it, it
is not enough to see just the final result generated by Seqgsee on a given
problem. Much more important is to see how it works in general and what it
does on specific runs. Without a good visualization tool, however,
understanding such things is hard. An important goal has been to build tools
for this purpose. These have had the added benefit of being useful in the
development of the program, and they also make it easier to explain the ideas

behind Seqgsee.

1.3.6 SUBGOALS IN TENSION
Designing Seqgsee to be easy to extend and designing it to be easy to
generalize to other domains are distinct goals that pull in different directions.
Improving either one may cause a wors ening of the other. The Workspace (the
area where perceived groups and relations are kept) is an example. In Seqgsee,

the Workspace contains groups and relations. For each group, Seqsee knows its

22

location in the input sequence. This is clearly optimized for sequences.
moving to another domain (say, to the domain of playing Go), the workspace
structures would have to be different. Seqsee has several subroutines that make
it easy to write codelets solely for the domain of understanding sequences, and

these will not generalize to the domain of playing Go.

Generality and visualization are also in tension. Displaying a sequence

and chunks within it is easy, as is displaying a Go board. However, creating a

In

generalized display that can be used for both the domain of sequences and for

the domain of Go is trickier (indeed, | have no ideas whatsoever on how one

might attempt this).

In the same vein, extensibility and scalability are at odds. As more

categories and goals are added, the likelihood of their interfering with each

other goes up, and Segsee may become less scalable.

Section 1.4 THE STRUCTURE OF THIS DOCUMENT

Chapter 2 describes the Seek -Whence domain and, using dozens of
sequences, points out its cognitive richness. Chapter 3 shows how well Seqgsee
performs on these se quences, and compares its performance with human
performance. Chapter 4 begins a description of the internals of Seqgsee by giving
a bi-eyd §imv of the architecture, and Chapters 5, 6, and 7 continue the
description of Seqsee's architecture showing, res pectively, how the key notions
of context, categories, and long -term memory have been implemented. Finally,
Chapter 8 points out some of the shortcomings of the current implementation

with specific remedies suggested for a few of them.

23

24

Chapter 2 THE SEEK-WHENCE DOMAIN

The Seqsee project is an attempt to model fundamental and general
aspects of human cognition. The aspects being modeled are not limited to any
single domain. However, the actual domain that Seqsee works in is of necessity
constrained. In this chapte r, | describe this domain in detail, and | explain the
limitations on the domain and show how these constraints promote certain

types of explorations more deeply.

Before diving into the details, | would like to clarify my use of the names
SeekWhence and Segsee. The Seek-Whence domain was introduced by Douglas
Hofstadter around 1977, and he describes it along with the ideas leading up to
itin Metamagical Themas (Hofstadter, 1985) and in Fluid Concepts and Creative
Analogies (Hofstadter and the Members of the Fluid Analogies Research Group,
1995). The Seek-Whence program , on the other hand, is a program i yet
unrealized A that would be able to solve problems in the Seek -Whence domain
as well as a human can, and in the same way. It is thus a wishful abstraction not
achievable anytime soon. Segsee can be thought of as a stepping -stone on the

long path to the Seek -Whence program.

Section 2.1 WHAT CONSTITUTES A PROBLEM IN THIS DOMAIN ?

The notion of a p roblem in the Seek -Whence domain can be explained
with an example. A human being first thinks of an integer sequence. For the

sake of concreteness, assume that the infinite sequence thought of is

Sequence 6. 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

This sequence is made up of rising blocks of increasing lengths: 1 A 12
i 1 2 3. The person then chooses how many initial terms to reveal to another
person or to the program. Depending on this choice, the solver will receive as
input 60 121236o0r 01 & or any of the other possibilities , including those
ending in an incomplete block . Clearly, each of these inputs presents a slightly

different cognitive challenge to the solver. For example, the input o1l 1062

25

ending in an incomplete final block, is likely to be more confusing than the two

inputs shown ea rlier.

Let us now | ook at t he situation from
concretenessds sake, adsls ulmbesd indntaSeqgsde seesogly gi v en
these initial four terms, and, of course, infinitely many sequences have exactly
these initial terms. M any such sequences could be random, but even if not

random, infinitely many start out this way. What to do?

The problem is not as bad as it may seem. Even though there really are
infinitely many possibilities, not all of them are equally plausible. An anal ogy
will make this precise. Imagine that on a cold December morning your car
refuses to start. There are several possible explanations for this, including the
explanations that somebody stole the engine, or that this is a prank and your
frustration is bein g taped for the benefit of YouTube. These explanations are
highly implausible, though technically possible in a nitpicking sort of way.

These, and infinitely many others, do not enter your mind at all i atleast not at
that early a stage of frustration. In stead, the thoughts that you do entertain are

usually simpler and informed by similar episodes from earlier in your life.

In the case of Segsee, analogously, only a few of the possible

continuations are plausible. Still, multiple simple extrapolations rema in in

Seq:s

contention. I show seven possible extrapolations

the one that the human inventor intended. These are shown in a format that
brings out their internal structure. However, the reader must keep in mind that
what Segsee is g iven as input is nothing but raw numbers, and it must draw its

own ovals if needed.

e DADA DA D

26

Sequence 9. no 1 2 3 2 11 2 3 4 3 2 1

Assuming that Seqsee is able to imagine these possible extrapolations, it
needs to try to single out the one that is the correct sequence fi namely, the
sequence thought of by the human. To pick out the correct answer or to check
the answer that it currently believes in, Seqsee may ask the human a question
Il i ke OAre the next two terms 3 and 17?76. I'n thi
since the next two terms are 02 306. When Seqsce
the sequence by a few terms and finally trusts the theory of the sequence that it

has come up with, it finishes up by describing the sequence in words.

A Opr o-bblkwmi ng ée withpSegseeds thus really a back -and-forth
dialogue between the program and the sequence -inventor as opposed to being a

si mple O0sequence in, extrapolation outdé affair

Section 2.2 A SAMPLER OF SEQUENCES

| present below a variety of sequences from the Seek -Whence domain,

chosen to showcase the domainds breadt h.

2.2.1 PERIODIC AND QUASI-PERIODIC SEQUENCES
Let us begin with simple periodic sequences. Here are two examples with

periods of 1 and 3, respectively:

27

it DOOO®

Throughout, | will point out metaphorical knobs that we can twist to
increase or decrease the cognitive difficulty of the sequence. A knob available
for periodic sequences slightly alters the periodic nature fi instead of repeating
the same thing, a slight variation is made. Although no longer periodic in a
strict mathematical sense, the resulting sequence retains a periodic feel, and |
shall call such sequences quasi-periodic. Sequence 16 is just a spicier, quasi-

periodic version of the periodic Sequence 15:

Sequence °

Of course, we can twist this knob further, and make variations in more

than one place, even heterogeneous variations:

> IO I

The variation may also play with lengths, and in that case, the quasi -
periodic nature of the resultant sequence is hard er to discern in the raw form,

but it stands out when shown with ovals:

Sequence 18. 1 7 1 2 8 1 2 3 9

Although understanding this sequence is simple for people, the mental

skills needed for its understanding are not so simple. To understand even this

28

simple sequence, when i t is shown to us without ovals, we need to be able to

recognizz3®) @(as a single chunk, to recognize th
o(1 2)¢6, to recognize that the solitary 016
degenerate chunk A o (1f) é@nd alsotor ecogni ze oO0((1) 7)06 and 0

an alogous structures.

Before we move on to other sequences, | would like to point out that
Sequence 17 affords an interesting example of a phenomenon that appears
paradoxical at first blush fi that restrictions can actually enrich a domain. The
next few terdB)anéd &(4L3) (6 2 24) 6. As the m
bl ock of the sequence keeps getting smaller,
should the sequence continue? Several possi bilities come to mind. If negative
numbers are admissible 7, the simplest solution is to just continue with
0é(7125 8026 9 -1 27) €,6 and this i s what Seqs
However, the original Seek -Whence domain does not include negative numbers
and this oO0solutiond6 is therefore sweeping the
to using only the natural numbers, the possible ways of dealing with the middle
element get creative, as shown below. Note that all of these solutions are
extravagant and unca lled for if negative numbers are perfectly acceptable within

the domain.

The oO0stickyd6é solution: 0é (7 1 25) (8
The Obouncingéd solution: 0 é (7 1 25)
(10228)¢é 0

1T The oOopret-erdsthemced sold5 (8drRE) (0 87) (7
(1028) ¢é6

f The obalkingdé solution: oé (7 1 25) (

stops here).

" Negative numbers are not a part of the original Seek -Whence domain. The domain was designed in
order to have nothing to do with math notions of any sophistication, and to have all numbers have meanings
as counting numbers. | initially left the negative numbers in in Seqsee bec ause it was easier to code that way. |
always intended to take them out later, but never got around to it.

29

2.2.2 ASCENDING GROUPS
An instance of the category ascending is the sequence fragment 0 3 5 66,
and we have already seen sequences Involving th is category . One of the simplest

sequences based on this category is:

e DA DA DA 3 D

Many knobs come to mind that can increase the difficulty of
understanding such a sequence. In Sequence 20, the left end of each group stays
at 0 1 6onlyteemight end changes. This is the natural end, in a certain sense,

because the following sequence seems slightly harder:

Of course, both ends can move:

o (DE D@ 4w WD

Or both can move without changing the length:

Sequence 23. 6 7 8 9 7 8 9 10

Or length can play an important role , with the start of each group equal

to the length of the previous group:

Sequence 24 34567867894567891

And | have barely scratched the surface, since | have not mentioned
changes to the numbers themselves without changing the overall structure of

the sequence:

30

—_— T e = T T T ==

Throughout thi s document, | have displayed sequences by indicating
groups with ovals. The obvious reason for doing so is to prevent slowing the
reader down. Even though | have half a dozen years of working in this domain
under my belt, and despite my great familiarity w ith all of these sequences,
some sequences | have displayed here still take me a few seconds to understand

if they are shown to me without the ovals.

With the ovals present, however, it is a different story. Even if seeing the
sequence for the first time, the reader will trivially understand it, with very little
or no effort. There is no need for me to spell out what is happening in, say,
Sequence 23. This ability to easily and effortlessly grasp an enormous variety of
simple p atterns is the standard, vanilla human cognitive ability that we wish to

capture in Seqsee or Seek -Whence.

2.2.3 DESCENDING GROUPS AND SAMENESS GROUPS
Let us return to the goal of exhibiting more sequences. Analogous to
ascending are the categories descending and sameness, and these participate in

the following sequences:

Sequence 26. @@@ 4 4 4 4

Sequence 27. @@@@ @

~

2.2.4 COMBINING i OR CROSSING i SEQUENCES

The complexity of sequences <can be
more sequences. [do not have a for mal
look ing at the following sequences, the reader should be able to see what | am
doing. Combining Sequence 26 with Sequence 17 (repeated below) produces, for

example, Sequence 28, which is more complex than either:

31

stepped

def in

Sequence 26 @@@ 4 4 4 4

In the same combining spirit, we can also combine Sequence 7 with

Sequence 26 (both repeated below), and obtain Sequence 29 or Sequence 30.

Sequence 7 @@@
Sequence 26 @@@ 4 4 4 4

Sequence 29.

Sequence 30.

We can take our newfound zeal for combination further by combining

Sequence 7 with itself to yield:

Sequence 31 is the most complex sequence we have created so far. Ap art
from being interesting as a test case because of its complexity and hierarchical

structure, it will also serve as a good example of a couple of new ideas to be

introduced later A O0squintingo6 i n Sect ipanseqlences irman d

Section 2.6 .

32

garden

Section 2.3 PATTERN OBASED SEQUENCES

Canonical examples that many people come up with when thinking about

integer sequences include the following:

Sequence 32. 1 3 5 7 9 11
Sequence 33. 2 3 5 7 1 13 17 19
Sequence 34. 1 1 2 3 5 8 13 21 34

Sequence 32 consists of the odd numbers; Sequence 33 consists of the
prime numbers; and the sequence after that is made up of the Fibonacci
numbers (with each term being the sum of the previous two terms). As members
of the mathematical category integer sequences , these are quite central. And yet,

all of these sequences lie outside the Seek -Whence domain.

Why banish these sequences? To answer this question, let us begin with

Sequence 33. Recognizing what this sequence is requires, among other things,

the ability to recognize 056 and 0706 as pri mes
such knowledge as 07 is a primeédé, logically we
as 021 is a triangular number 6 and e¥%Ems 060 i s

last factoid leads to a bizarre sequence (Sequence 35) that consists of the
pri mes all the way through 0596, and then, pe
and then goes on. This sequence would have been frustratingly hard to fathom,

even for some mathematicians, if | had not just let the cat out of the bag:

®A simple group i s a mat hemati cal object t hat is defined as o0a g
subgroupé6. I'n other (but vaghuay mor d$actaorséd map &r tgrfongm 016 an
therefore like a prime number. In fact, any group whose number of elements is a prime number is necessarily
a simple group. The Icosahedral group (the group of symmetries of the regular icosahedron) has 60 elements,
and it is the smallest simple group with non -prime size. Obviously, | do not expect Seqsee ever to understand

this.

33

Sequence 35. 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 60

Is such specialized knowledge central to cognition? No, certainly none of
the individual pieces of knowledge is needed for intelligent thinking. A vast
majority of humanity is happi ly oblivious of these mathematical facts and yet
gets by just fine. An average person can easily handle lots of sequences without

any specialized technical knowledge at all.

However, although t he speci fic categories
OFi bonacci canu beb dispesmsed with, the ability to create and use
categories in general is decidedly indispensable. As will be shown, the Seek -
Whence domain A though stripped of mathematical knowledge of the sort just

mentioned A isrich in categories, both pre -existe nt and created on the fly.

If even sequences like the prime numbers and odd numbers are outside
Seqseeds domain, just what is left? This chapter
the basic criterion is easily summarized: sequences created using the concepts
numerical successor , numerical predecessor , equality , and length are within the
domain. This description intentionally leaves out addition and subtraction, let
alone multiplication, division, and factors. This is so because even keeping
addition in the pictu re brings in sequences like the Fibonacci numbers (where
each term is the sum of the preceding two), the odd numbers (where each term
is the sum of the preceding term and the number 2), the squares (where the n i

term is the sum of the first n odd numbers) and so on.

Despite the extremely stripped -down, austere nature of the Seek -Whence
domain, there are plenty of complicated challenges in it, such as Sequence 36
below, and also challenges that people initially find perplexing, such as

Sequence 37.

Sequence 36.

34

Sequence 37. (0@9 @@‘ Q

As was stated in the previous chapter, the primary goal of this project is
to explore cognition, and Seek -Whence merely happens to be the domain chosen
in which to conduct such an exploration. | t is therefore not the primary goal of
this project to create an expert sequence -extrapolator, though obviously we
would Ilike to make Segsee good at its task. k
the domain, and since it is not the goal of the project to develo p a model of
expert knowledge in a technical domain, addition (and other mathematical
concepts) was kept out deliberately. (See further discussion in (Hofstadter and
the Members of the Fluid Analogies Research Group, 1995)). It makes sense to
limit the complexity of the domain so long as we do not oversimplif y. A
dazzling array of cognitively rich sequences remains. Various sections in this
chapter present samplers of sequences that amply demonstrate that the
simplification achieved by barring addition and other mathematical concepts

does not throw out the bab y with the bathwater.

Section 2.4 MULTIPLE WAYS OF SEEING

There is nothing in the world that has a unique way of being perceived:

someoneds trash i somemne's tefrogist & sanother's , liberation
fighter , and someone's honest criticism is another's heinous blasphemy . More
mundanel vy, George W. Bush can be seen as 0the

43" presi dent 6 or per haps even as 0George I

presidents by George Washington and George Bush Sr.).

Two ways of understanding something might be mathematically identical
and yet vastly differ psychologically, as Richard Feynman points out (1965, p.
53). Having described inverse -square laws of force in three different i but
mathe matically equivalent A way s, h e g oes Psychologically s[thege 0
theories] are different because they are completely unequivalent when you are
trying to guess new | aws. 6 While Seqsee need:

cutting edge of particle physics , it must still be capable of seeing a sequence in

35

multiple ways, just as people do. The following sequence can be seen as

oscillating between a | ow point of 016
3 3 3
s 38.
equence 1 2 2 1 2 2 1 2 2 1
It could also be seen in a radically different way that nonetheless predicts

exactly the same continuation:

Which of these diverse ways the sequence is perceived in influences how
similar that sequence appears to another. For example, Sequence 38, more than
Sequence 39, appears similar to Sequence 40 . Conversely, Sequence 39, but not

Sequence 38, appears similar to Sequence 41.

8 8
S 40. 7 7 7 7
equence 5 6 6 5 6 6 5
Section 2.5 SQUINTING
Consider the following sequence:
Sequence 42. 1 2 3 1 2 2 3 1 2 2 2 3

This can be understood in a mechanical and lifeless fashion as an

interlacing of the three sequences 01 1

36

t

However, the sequence has a cleaner description that is readily ap parent
to people: the sequence is merely an embellished version of the sequence shown

next. I f we 0s g uiSequehce 425 wexcan séed ask Sequence 43.

Though the embellishments are not the same in successive ovals, their variation

is regular and predictable, thus allowing us to extend the sequence.

People very readily see something as something else. This phenomenon is

so commonplace that it is hard to know what examples to start w ith. People

routinely understand others despite speaech

three-pl age |l etterdé is-plagaerd edd edvd wht déde nfio

in fact, mo st peopl e wild.l not even hear

integ ration is seen as being just an extreme case of summation, linear
transformations are seen as matrix multiplications, and so forth. The sociologist

Ervin Goffman (1986) explores the question of how we understand what is going

on around us, and a core component of his theory involves what he terms
oOkeyingbé, which is reinterpreting some
book is filled with examples of such reinterpretations. For example, when we
watch the play o6Julius Caesar 6, what we
stage, in the United States. However, we can (and unconsciously do) pretend that

we are witnessing a scene in Europe wi th a very different set of people. We may
personally know some of the artists in the play, but from the time the curtain

rises to the time it falls, we are transported into a different world. Hofstadter

(1995) providesp |l enty of other examples of oOseei

Sequence 42, the Seek-Whence domain is rich in examples requiring this ability

to squint.

Other sequences that benefit from squinting include

37

er

noti c
he

Vi

e |

a

which can be seen in a lifeless fashion as 16 terms repeating endlessly, or it can
be seen as a jazzed -up version of Sequence 43, with some term in each group
being doubled and the position of this doubled item bouncing around in its

size -3 cage, asis shownin Sequence 45 below.

]) G ah T

Similarly, Sequence 46 can be seen as made up of three interlaced
sequences, as shown in Sequence 47, but there is a much simpler way of seeing
it: each group is just an ascending group, but the third term from the end of

each group is hidden behind a 0.

Sequence 46. 1 2 0 4 5 1 2 3 0 5 6 1 2 3 4 0 6 7

e (DOEHC2IOECHA2 1O

In this same spirit, the following three sequences are related:

Sequence 49. @@@

Sequence 50. 1 2 3 4 5

The odirectd wSequeneefd8 is aseshowg by the ovals, as a
hierarchical structure. However, it can also be seen as an embellished version of
Sequence 49, with each simple number being replaced by the more ornate

ascending group. By the same token, Sequence 49 is a resplendent version of the

unassuming sequence 01 2 Sequehce. 48 lisnjusttah at

embel |l i shment of o1 2 3 46.

38

S

ense

’

Section 2.6 GARDEN -PATH SEQUENCES

A Ogawpathesaentenced is a The od rmamche bohti & e

whose initial words suggest (in fact, almost shove down the throat) an incorrect
interpretation. Subsequent words do not fit this initial interpretation and force

the reader to reassess the meaning of th e earlier part of the sentence. Garden -
path sequences, analogously, contain terms that cry out to be seen in some

(misleading) way. Two such sequences are shown next.

Sequence 51. 1 1 1 2 1 1 2 1 2 3

Sequence 52. 2 1 2 2 2 2 2 3 2

Sequence 51 is likely hard for the reader to guess, despite the fact that it
has already been seen and discussed in this chapter. Sequence 52 is more

clearly seen as

In both cases, a block of identical terms seemed to cry out to be grouped:
the block of ttte efei rosltosandc the bl ock of
highly tempting grouping in each case leads one astray, making the solution
harder to find, but people nonetheless tend very reliably to form these groups
quickly. Even if, in searching for another w ay of seeing the sequence, they then
tentatively break these groups apart, they find it hard to not form the same

groups again.

In experiments that | conducted with human subjects in Robert

0

five

Gol dstonef6s | aboratory (these ar ellodimgdwor i bed

sequences (without the ovals) were among many that were shown to subjects,

and the time required for the subjects to understand each sequence was

39

0

observed. Sequence 55 took over three times as long as Sequence 54 did°?, for
obvious reasons. Human vision makes it virtually impossible to not notice

identical things when they are neighbors.

A final example ofgarden -pat h sequences invol3ué6o60l1 2 306 a

as misleading group s, as becomes obvious when you mentally erase the ovals.

wraze QODT DT IC DA s DA 5 DA 5 D

Section 2.7 BLEMISHED SEQUENCES

Sequence 56 admi t s of anot her interpretation, in o\
02845 66 do not need to be split apartltsinal though t

an initial blemish:

s 1 QCIEDCE A THEEDEE 8 1 15D

Sequences with initial blemishes are also part of this domain. Seqsee

should be able to look at a sequence like

Sequence 58. 7 1 2 3 4 5 6 7 8 9

and see it as oOascending, except with the initial

° 21 out of 25 subjects solved Sequence 54, taking 5.13 seconds on average when successful. 13 out
of 23 subjects solved Sequence 55, taking 16.87 seconds on average when successful.

40

Section 2.8 SEQSEHES DEEP CONNECTION WITH COPYCAT

Segsee would not have been possible had the very rich Copycat and
Metacat projects not already explored many of the ideas used here and
demonstrated that these can actually be made to work. Although many ideas
implemented in Copycat and Metacat were already in place in the early
working program increases the amount of trust one places in those ideas and

makes ambitious projects conceivable.

In this section, | point out the deep connections between these programs
and Segsee. Work on Seqsee began afte r Copycat and Metacat had been
completed, and it builds on these p r o g r aamslitécture. Curiously, though
these programs themselves were born out of an earlier FARG attempt at a

sequence -extrapolating program.

In the first half on the 198 0 § Hofstadter designed the Seek -Whence
domain and the original ideas for the architecture (Hofstadter, Meredith, and
Clossman, 1982) . Marsha Meredith (1986) worked on a progr am called Seek -
Whence. The task turned out to be quite difficult, and one problem that
Hofstadter repeatedly ran into was the ubiquity of analogies in integer
sequences. Melanie Mitchell (1990, p. 232) describes the role of analogy -making
in solving these sequences:
Tofindacohe rent i nterpretation for the sequence 0
one must map hypothesized segments against each other, perceiving
corresponding roles within segments (for example, a reasonable parsing is
0121B1-141¢é6, with the role pl adyecdorbrye stphoendd 2:ndg itm 0
the role played 3blyd,t haen do 3séo ionn)0.1 What originally

the Copycat project was Hofstadterf6s desire to
role of analogy -making in Seek -Whence.

The essential role of analogy -making in Seek-Whence was indeed isolated,
and became the Copycat microdomain. Melanie Mitchell (1990) produced the
program Copycat, and Jim Marshall (1999) extended her work to produce
Metacat. Seqsee comes full circle, and applies some of their ideas to the Seek -

Whence domain.

41

Section 2.9 THE Fuzzy BOUNDARY OF THE DOMAIN

I must confess to having two seemingly contr adictory views about what
to include in the domain. On the one hand, mathematical ideas such as addition ,
multiplication , and primality have been shied away from. On the other, fuzzier
ideas such as mountain (Sequence 59), oscillation (Sequence 60), hiding
(Sequence 61) and doubling (Sequence 62) have been welcomed. This seeming

inconsistency needs an explanation.

Sequence 59.
Sequence 60.

Sequence 61.

e QOB OO GG

There are strong reasons to prefer, say, hiding for inclusion within the

Seek-Whence domain over, say, prime number . For one, the concept of hiding
surely arose many millennia before anybody conceived of the notion number A
let alone the notion prime number A and in that sense it is a more important
and basic concept. Mathematical terms such as multiplication are fairly recent,
by contrast, and are certainly not among the most typical and frequent of

human concepts. A program such as Superseeker i which can recogniz e,
without even blinking, a sequence such as (to pick something at random) the
Mobius transform of the Catalan numbers fi appears impressive and
superhuman, but it stumbles on Sequence 63, where even a third grader would
not. Th e ability to extrapolate the humble Sequence 63 i wi th its oOanybody car
sol ve t ha tis!idseefnete e, far more central to human cognition than

being able to recognize the Mébius transform of the Catalan numbers.

42

A second (and related) reason is that although the prime numbers are
important in the world of integer sequences, they are inconsequential in most
others. Hiding is a far more general phenomenon and thus is a central human

concept.

Given the discussion abo ve, it is clear that the boundary of the Seek -
Whence domain is quite fuzzy. We could throw into it, for instance, the notion

of alternation between two things, exemplified in sequences such as:

Sequence 64. @@ 0 0 0 0
Sequence 65. OO 3 3 3 0@@
Sequence 66. @ 1 @ 3 4 Om 1 @ 3456

Indeed, recognizing the presence of the abstra ct notion of alternation in
its countless guises is many orders of magnitude harder than recognizing
primes, as the latter can be achieved in some programming languages in a single

line of code.

Having defined the problem domain, we look next at how well S egsee
performs on some of these sequences, and we also compare its performance

with human performance.

43

44

Chapter 3 SEQSEHS PERFORMANCE

The primary reason for promoting the chapter on performance from its
customary location near the end of the dissertation is moti vational. It is an
opportunity for the reader to decide if the remainder of this document is worth
their time. There is no point in dragging the reader through a detailed
description of how Seqsee works if, at the end, the performance is felt to be

mediocr e. | hope, however, that this chapter proves to be a sufficient hook.

In this chapter, | describe sequences that Seqsee can solve and sequences
beyond its reach. | also compare Seqsee & performance on some sequences with
human performance. Seqsee has a few optional features that can be turned on
or off, resulting in different modes in which Segsee can be run, and | compare
Seqgsee® performance in various modes. Lastly, | describe the effects that
previously seen sequences have on Seqgsee when it is a run wit h the optional

feature dlong -term memory 6 turned on.

Let us begin on a positive note by looking at a few sequences that Seqsee
successfully solves. The relati ve difficulty that Segsee (or a human) has in
understanding different sequences is front and cente r to the current discussion,
and annotating sequences with ovals greatly reduce s such differences. Figure
3.1 below therefore shows the raw form in which the se are presented to Seqgsee.

The annotated versions of these sequences are shown on the next page .

a

Figure 3.1 A few simple sequences that Segsee solves

45

Figure 3.2 The sequences from Figure 3.1 , now shown with ovals

The claim that Seqsee 0Osolves6 a particular sequence is blurry, and the
next section therefore descri bes one complete session of Seqsee and specifically
points out what | mean by 0solving 6. Having made that clear, | will then be able
to describe Seqsee 6 gerformance in terms of the percentage of runs where
Seqgsee successfully tackles a particular sequen ce, and how long it took to
succeed. oHow long 6 is measured in onumber of codeletsrun 6, a noti on that wi
be described in detail in the next chapter. For t he ti me being, the ter

steps6 can safely be substituted for o0codel etso.

| use percentile chart s to display the time taken by Segsee on a particular
sequence. A single percentile chartis shown in Figure 3.3 , and describe d shortly

thereafter .

24k
18k
12k

ok i
ok ||||||‘
a

Figure 3.3 A percentile graph

46

The percentile chart consists of 10 vertical lines and a horizontal cut
across them . Each vertical line represents a specific percentile of the time
Segsee took on some problem. The rightmost vertical line rep resents the 100th
percentile A this is the maximum amount of time that Seqsee took when it
successfully solved a problem. In this particular chart, that number is around
20,000 codelets. The line next to it represents the 90th percentile i in 90% of
cases, Seqsee took this much time or less, which in this chart is about 15,000
codelet. Thus, in the slowest 10% of its runs, Seqsee took between 15,000 and
20,000 codelets. As we work leftward, the third line from the right represents
the 80th percentile, and so forth, until the leftmost line, which represents the
10th percentile. It can thus be seen that about h alf the time, Seqsee solves this
problem in 3000 codelets or less, but often takes more. On the average, it takes
about 7000 codelets, and this average is represented by the white horizontal

cut.

In comparing Seqgsee's performance on two sequences, looking only at the
rightmost vertical line (that is, the maximum time Seqsee took) or only at the
horizontal cut (that is, th e average time) is informative, but t he shape of the

graph tells a richer story.

The figure below shows Seqsee 6 s per f or ma ntlreee seqoencesh e

from Figure 3.1.

100/ 160/
151/
100% 120 6o 160 24K
75% 18k
50% 12k
25% 6k |
0% Ok —t l ||I|||||||
a b c a b c
Percent correct Time taken when correct
Figure 3.4 Seqgseed performance on sequences from Figure 3.1

In this figure, and in all such figures in this chapter, the labels below the
bars correspond to sequences with the same label in the preceding figure that

displays sequences .

47

Labels above the bar in the left chart are of the form da/b 6 (for example,
0151/16006 can be s e ehar),araheye indicites thetnbimber af
times that Seqsee was tested on this sequence (160 times) and the number of
times that it succeeded (151 times). Seqsee almost always solves these three
sequences, dipping to a success rate of 94 %only for the third sequence. Failure
on a sequence can have either of two causes: either Segsee crashed (which it
occasionally does), or the program had not succeeded within 25000 codelets, at

which point the run was terminated.

The right half of Figure 3.4 displays percentile charts showing the
number of codelets that Seqsee req uired on each of the three sequences. It is
apparent that Segsee does not even break a sweat on the first two sequences i
their percentile graphs are nearly flat, except for 10% of the worst runs in each
case, which took noticeably longer but still finished in under 1000 and 4000
codelets respectively . The third sequence makes Segsee work somewhat harder,
requiring about 4000 time steps on the average. About 10% of the time,
however, Seqsee takes between 15 ,000 and 20,000 time steps (this can be seen

by look ing at the difference in the heights of the two rightmost vertical lines)

In each of these three sequences, the slowest runs were significantly
slower than most runs. The slowest run took several times longer than the
average run (represented by the hori zontal cut). This pattern of occasionally
taking much longer tha n average will be repeated in many sequences, as the
charts in the rest of this chapter will show. Often, the reason for Seqsee taking
long in a particul ar run is an initial misstep fi an unfor tunate interpretation of
some part of the sequence A from which it does not quickly recover. The
previous chapter gave examples of garden -path sequences where some part of
the sequence cries out for a particular interpretation that happens to be
misleading . The vast majority of sequen ces can be thought of as being garden -
path sequences at least to some extent: that is, locally, in small pockets, short
pieces of the sequence seem to fit together in a way that is not consistent with
the global interpretation. In the third sequence of the figure above, there are
many such small local pockets, some of which are indicated by distracting blue

ovals below:

48

Figure 3.5 Sequence c with distractors

Only the more prominent distractors have been marked: less prominent

groups i such as a f @ wavelenleft autto avoid clutter.

In general, the greater the number of distracting things, the slower it is
for Seqsee and for people to understand that
perceive patterns has grown over the course of this project, so has the range of
things by which it is distracted. This is the primary reason for hiding some of
Seqseeds abilities behind optional features:
enable Seqsee to see sequences it could not otherwise see, but hinder its
performance on some other sequences. Ideally, such hiding should not be
required. Il ndeed, many of Segseebs features ha
and are always kept turned on without any issue. Chapter 6, which deals with
categories, sho ws what those checks and balances look like in some cases.
Section 3.5, on the other hand, describes one particular overzealous feature i
0seeing asb, w h $qgeirtting | A and sliscusses doe sequences on

which Seqgsee p erforms better when that feature is turned off.

Section 3.2 ONE COMPLETE RUN

Let us owatchd Segqgsee run. Over the next s

of successive stages of Seqgsee solving Sequence 67 below.

Sequence 67. 6 1 2 7 1 2 3 8 1 2 3 4

49

statpose| 0|0 € Time steps

View Help

WORKSPACE

TNTerRAcTION WINDOW

Start Debug

|

Figure 3.6 Initial stage: after 0 codelets

This screenshot sh ows the initial state of Seqsee before any processing
has happened. The numeral 0006 can be seen, near the center at the very top of
the image, representing the number of time steps that have elapsed in the run.
Each time step cor responds to the execution of a single codelet, as will be

described in the next chapter .

The bottom of the image is occupied by the interaction window. This is
where Segsee asks the human who is interacting with it such questions as 0Are

the next three ter ms 3, 4, and 5? 6 Naturally, this window is empty at this stage.

Finally, the central part of the figure represents the Workspace . One
might consider this to be a black board on which Seqsee makes notes (and this
imagery is explained further in Appendix A). At this stage, the Workspace

contains just the initial terms that Segsee was given. This will soon change,

50

however, and the Workspace will fill up as pieces of the sequence and
relationships among them begin to be seen. This will be the main area to watch

in subsequent screenshots

MPause auit| 50

View Help

Bonds
& \\»

6 (E::}> 7 QD s 1 2 3 4

.
(rROUPS

Are These Two Objects Related?

Start Debug

=

Figure 3.7 Early stage: some groups seen

The figure above is a snapshot fifty steps into the run. The reader must
keep in mind that this is only how Seqsee looks after fifty steps in this
particular run, and because of the thousands of very small, local decisions that
Seqgsee makes probabilistically, on different runs, it follows different trajectories

even if the input is the same.

~

Seqgsee has discovered some structure at this stage i small bits of the
sequence have started to make sense. Four yellow arrows are visible. | will
follow Copycat terminology and call these arrows obonds 6. Bonds represent any

kind of similarity or relatedness that Seqsee has discovered between elements

51

or between groups of elements. Often, a more appropriate term for these bonds
is analogies and this term will also be occasionally used. On a black -and -white
printout, the arrowheads may be hard to discern, and | should mention that all

arrows point to the right.

A couple of blue ovals can be seen, and these denote groups: chunks that
Seqsee can treat as single units. These chunks are not black boxes (i.e., opaque).
ltems inside such a box are visible to Segsee , and it is able to form bonds or
other groups among these. However, once a chunk is formed i and until it is

destroyed, as might happen sometimes fi Segsee has a probabilistic tendency to

ignore its contents. Thus, the chunk is a translucent box fi not quite opaque,
and not quite transparent. The discussion of Figure 3.9 (on page 54) provides an
illustra tion.
‘Start| Pause | 0uit| 268
View Help

/‘#ﬂ‘—_..-"-' '_aN /"-‘-—__-‘-h"""‘_

PLEASE SEE BELOW

Ask if This is the Intended Continuation .
Extending analogy: Is the next term 5? =
yes
no
Start Debug
Jod
Figure 3.8 Afirst question A although hasty! @ is asked

52

The interaction window now contains a question (0Ols the next term 5? 0).
The preamble to the question i OExtending analogy 6 i briefly describes why

Segsee believes that the next term may be a 056.

The question asked by Seqsee may sound myopic @i it certainly is hasty
fi but there is some justification to it. Had Segsee been working on the almost
identical Sequence 68 (below), then the correspond i hg question o0ls th

term 4 26 i would have been exactly the right question to ask.

(As a sidenote, notice how easily we humans
corresponding guestionod (me amalogoug , queosft i op Gy s e,
presuming, taking totally for granted, that other humans will effortlessly and
trivially see, understand, and agree with what we're saying. That is, we are

assuming an analogy -making capacity that is both universal and objectiv e!)

Since Seqsee does not and should not assume that the initial terms

presented to it were neatly cut off at a group boundary, it is willing to ask for
subsequent terms based only on the last few known terms , and doing this
makes perfect sense, up to a point. It is simply a very local point of view, not

taking into account any overarching global structure. And indeed, at this point,

no global structure has been seen, so there is none to take into account as of

yet. For t hat reason, one <can be | esSecsagesds i n
guestion and simply say that it was a bit overeager and perhaps jumped the

gun, although in the light of Sequence 68, per haps it didndt .

Sequence 68. 8 1 2 3

Of course, if Segsee were less hasty and could hold its horses until more
of the sequence made sense, it would make fewer queries that go t onod6 for an
answer. How to make Seqsee less hasty and yet allow it to extend sequences
such as Sequence 68 is a deep problem f indeed, a problem th at is central to
achieving that elusive quality called intelligence i that | have not solved

satisfactorily.

53

Start| Pause | Ouit| 750

View Help

Attempt Extension of Analogy

Extending analogy: Is the next term 5? no _'J

Start Debug

b

Figure 3.9 Group of groups formed

At the stage shown in Figure 3.9, some higher -level groups have been
created. The gr o u pls2) d&fd 01 2 3) &een earlier are now seen as parts of
larger and higher -level groups i o6 (1 2))6 and o7 (1 2 3)) 6, and th ese groups
themselves, put together, form a still higher slevel group. 60 (1 2)6 is in fact al
part of another @growhicb(¢eveal ss)that Segsee is
where the group o0(1 2)6 belongs, and luckily Sect
possibilities simultaneously until further evidence is available. It does not

believe in each of these two competing groups equally st rongly, however.

Now that this large group whose two members are 0 ((& 2))6 and

0 ((T 2 3))6 has been seen, there is a strong reason , thanks to analogy, to beli eve

54

that the next few elements to the right of the 0 ((Z2 3))owi | | l{1e2 3 @))o8

and indeed Seqgsee should i and does fi actively look for these right there. The

five el ements 086, 016, 0206, 036, and 0406 ar «
they have not yet been seen as f o@ifli2R4g)o6a si ngl
buttheanalo gy bet wee()dand o7 (123)6 suggests the for ma
such an analogous group. Groups exert pressure to look for thei r analogues on

either side. For example,t he 0X23) 6 gr oup i nexertk omepeessure r

to look for a 046 immediately to its right. However, because it is enclosed in a

bigger group, this pressure is much weaker. This is an illustration of the earlier -

mentioned fact that groups are not black boxes but are translucent A their

parts can exert some (even if little) influence

Apart from arrows between elements i for example, between the 366 and
the 676 A there are arrows between groups A for example, betweenthe 0123) 6
group in the centerandthe 0 (23 4) @roup at the end. Using the term analogy
to describe this arrow connecting two blatantly analogous structures is more in
keeping with the conventional use of the term , but 1 tds i mportant t
that even the much simpler relation between 0

same cloth, and is also an analogy fi simpl y a humbler one.

55

Start I Pause | Quit | 803

View Save Help

PLEASE SEE BELOW

Attempt Extension of Group '

. Is the next term 5? no =
. Are the next 6 terms 9, 1, 2, 3, 4, and 5?

no

Start Debug

/|

Figure 3.10 The correct continuation is suggested!

At the stage displayed in Figure 3.10 , Seqsee has posed another question
OAre the next 6 terms 9, 1, 2, 3, 4, and 57?76 Whe
uses dotted ovals such as those seen above to indicate evidence in support of
the question. Note that Seqsee® question is not restricted to the next single
term but instead it predicts an entire large group i made up of 9, 1, 2, 3, 4,

and5 fi asa potential continuation to the pattern

Though Segsee considers these three groups as sufficient evidence to ask
the question, other groups that are inconsistent with this view of the sequence
i o((12)7)6, forexample A still linger in the background . Segsee will eventually
destroy these, but only after itis more convinced that it has put its finger on
what the essence of the sequence is. This cleanup will already have happened by

the next and final screenshot.

56

In the picture above , a far larger group encompassing all the known
elements at all levels of structure has been seen, and it should be mentioned
that this group is hierarchical: it has three members (shown by dotted ovals in

the same figure) each of which contains smaller groups as members.

Figure 3.11 And the solution is explain ed.

We have now reached the final screenshot in this series. A few more
terms are visible now, thanks to t he hunhavwng answered Oyeso to the
guestion in the previous screenshot. The group 09 (1 2 3 45)) 6 was added at

that point.

Since Seqsee® guess about the next term was correct, it is now more

certain about the nature of the sequence , and it can consequently delete

57

